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Abstract. The objective of this paper is to model travel time when drivers are equipped with

pre-trip and/or en-route real-time traffic information/advice. A travel simulator with a rea-

listic network and real historical congestion levels was used as a data collection tool. The

network included 40 links and 25 nodes. This paper presents models of the origin-to-desti-

nation travel time and en-route short-term route (link) travel time under five different types

and levels of advanced traveler information systems (ATIS). Mixed linear models with the

repeated observation’s technique were used in both models. Different covariance structures

(including the independent case) were developed and compared. The effect of correlation was

found significant in both models. The trip travel time analysis showed that as the level of

information increases (adding en-route to the pre-trip and advice to the advice-free infor-

mation), the average travel time decreases. The model estimates show that providing pre-trip

and en-route traffic information with advice could result in significant savings in the overall

travel time. The en-route short-term (link) travel time analysis showed that the en-route

short-term (link) information has a good chance of being used and followed. The short-term

qualitative information is more likely to be used than quantitative information. Learning and

being familiar with the system that provides the information decreases en-route short-term

delay.

1. Introduction

Advanced traveler information systems (ATIS) are intended to assist travel-

ers in planning and decision making for mode, departure time, and route

choices, including congestion avoidance, to improve the convenience and

efficiency of travel. The impact and effectiveness of ATIS, however, critically

depend on traveler’s responses to these systems and to the information that

they offer. Therefore, it is essential to understand the traveler’s decision-

making process under real-time information. The objective of this paper is to

model travel time and en-route short-term link travel time when drivers are

equipped with pre-trip and/or en-route real-time traffic information/advice. A

travel simulator was used to collect dynamic route choice data. The simulator

uses realistic network and real historical volumes. Different weather conditions
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are also used. The simulator accounts for delays caused by intersections, recur-

ring congestion, non-recurring congestion (incident), and queuing at toll plazas.

The network consists of 25 nodes and 40 links and comprises different types of

highways. For a detailed design and description of the simulator and the net-

work, the reader is referred to Abdalla (2003). Abdel-Aty and Abdalla (2002)

illustrated the validity of the data and the simulator as a route-choice data col-

lection tool. Figure 2 shows a spot view from the simulator.

The problem of repeated measurements arose in this study because each

subject made multiple choices. These choices are correlated. This correlation

must be taken into account. Otherwise, the model would underestimate (over-

estimate) the standard errors of the between- (within-) subject effects (Stokes

et al. 2000). Mixed linear models with different covariance structures were used

and compared with the independent case to validate the statistical analysis.

2. Background

2.1. Previous methodologies for modeling driver’s behavior under ATIS

Researchers have used cross tabulation, analysis of variance, and probabilis-

tic models in studying and modeling driver’s behavior under ATIS (Vaughn

et al. 1995a, b; Koutsopoulos et al. 2000). Driver behavior modeling has

been traditionally modeled by maximizing a certain utility function; mostly

logit or probit models to understand driver behavior under ATIS. Abdel-Aty

et al. (1994a) estimated three models: (1) a bivariate probit model of whether

commuters access pre-trip information and whether they use multiple routes,

(2) a bivariate probit model of whether commuters access en-route informa-

tion and use multiple routes, and (3) a negative binomial model of the fre-

quency of route changes given pre-trip or en-route information use. Abdel-

Aty et al. (1994b) developed a binary logit model to estimate respondent’s

choice to accept or reject an ATIS advice. Abdel-Aty et al. (1995) developed

a model that used five hypothetical binary choice sets collected in a com-

puter-aided telephone interview to determine how travel time variation

affects route choice, and the potential interplay among travel time variation,

traffic information acquisition and route choice. Khattak et al. (1995) esti-

mated a bivariate ordinal probit model of driver’s willingness to change

route or departure time given traffic information. They used two dependent

variables with five-point scale responses indicating the degree of driver’s

agreement (‘‘strongly agree’’ to ‘‘strongly disagree’’) that they would change

aspects of their travel. Liu and Mahmassani (1998) used a multivariate pro-

bit model with 24 dependent variables that were 4 days worth of decisions to

change departure time, route before leaving home, and route at each of four
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en-route decision points. This model took into account the commuter’s

learning from experience. Chen et al. (1999) employed event-count (fre-

quency) models to capture the principal effects of the commuter’s experience

with real-time information on user compliance. Yamamoto et al. (2000)

developed a multinomial logit model with alternatives representing the

choice between freeways and surface streets.

2.2. Previous driver’s behavior modeling with repeated observations

When the same respondent makes multiple choices, the dependent variable

and then the error terms for these choices are correlated. Few transportation-

related efforts have been conducted to account for this correlation. Louviere

and Woodworth (1983) and Mannering (1987) corrected the standard errors

produced by a repeated responses regression model by simply multiplying the

standard errors by the square root of the number of repeated observations.

Kitamura and Bunch (1990) used a dynamic ordered-response probit model of

car ownership with error components. Mannering et al. (1994) used an

ordered logit probability model and a duration model with heterogeneity cor-

relation term. Morikawa (1994) used logit models with error components to

treat serial correlation. Abdel-Aty et al. (1997) addressed this issue using indi-

vidual-specific random error components in binary logit models with a normal

mixing distribution. The standard deviation of the error components were

found to be significant. This showed clearly the need for some formal statisti-

cal corrections to account for the unobserved heterogeneity. Jou and Mah-

massani (1998) used a general probit model form for a dynamic switching

model, allowing the introduction of state dependence and serial correlation in

the model specification. Mahmassani and Liu (1999) used a multinomial pro-

bit model framework to capture the serial correlation arising from repeated

decisions made by the same respondent. Garrido and Mahmassani (2000) used

a multinomial probit model with spatial and temporally correlated error struc-

ture. Chen and Jovanis (2003) used a mixed linear model with repeated obser-

vations to model driver’s compliance with en-route guidance.

2.3. Travel time saving due to ATIS

A considerable number of studies have examined the potential benefits of

providing pre-trip and en-route real-time information to travelers. Research-

ers are interested in the effects of ATIS on all types of travel decisions.

ATIS is empirically shown to result in lessening travel time, congestion

delays, and incident clearance time (Wunderlich 1996; Abdel-Aty et al. 1997;

Sengupta & Hongola 1998). There is empirical evidence supporting the
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hypothesis that travelers alter their behavior in response to ATIS (Bonsall &

Parry 1991; Vaughn et al. 1995a, b; Zhao et al. 1996; Mahmassani & Hu

1997). Reiss et al. (1991) have reported travel time savings that ranged from

3% to 30% and reduction in incident and congestion delays of up to 80%

for impacted vehicles. However, other studies argued that providing

information might not necessarily reduce congestion (Arnott et al. 1990).

Based on the above review, there is a need for further understanding of

the decision process underlying traveler’s behavior in the presence of ATIS,

and in particular the implications for travel time. The literature is in need of

a study that groups most of the previously investigated factors together. The

analysis of this paper includes driver’s socioeconomics, driving experience,

driver’s familiarity with pre-trip/en-route traffic information, the existence of

five different levels of ATIS, different weather conditions, familiarity with

the network and familiarity with the device that provides the information

(the learning effect).

Moreover, most related analyses (with few exceptions, some of which are

mentioned above) ignored the correlation between repeated decisions made

by the same traveler. It has also been concluded that the literature needs

more efficient and statistically approved methodologies to handle this prob-

lem, which may bias the results. Gopinath (1995) demonstrated that different

model forecasts result when heterogeneity of travelers is not considered. Del-

vert (1997) argued that models of travel behavior in response to ATIS must

address heterogeneity in behavior. To draw accurate conclusions from

repeated-choices data, an appropriate model of within-subject correlation

must be used. If correlation is ignored by using a model that is too simple,

the model would underestimate the standard errors of the within-subject

effects, and overestimate the standard errors of the between-subject effects

(Stokes et al. 2000). On the other hand, if too complex a model is used, the

analyst loses power and efficiency. In this paper, unobserved heterogeneity is

considered by specifying and incorporating three different covariance struc-

tures of the correlated choices in the modeling process.

3. Methodology

3.1. Mixed linear models

A mixed linear model is a generalization of the standard linear model. The

generalization being that the data is permitted to exhibit correlation and

non-constant variability. The mixed linear model, therefore, provides the

flexibility of modeling not only the means of the data (as in the standard lin-

ear model) but their variances and covariances as well. The standard linear

66



model is certainly a useful one (Searle 1971). However, the distributional

assumption about its error term vector e is too restrictive (SAS 2003). In the

mixed linear models, two different types of effects can be included, fixed-

effects and random-effects. The fixed-effects are similar to those in the stan-

dard linear models. A random-effect is a variable that clusters the data

where within-cluster correlation exists. In fact, the combination of these two

types of effects led to the name mixed model. The reader is referred to Searle

et al. (1992) for historical developments of the mixed models. The SAS/

STAT PROC MIXED is a useful application for modeling mixed linear

models with repeated observations.

3.2. Modeling correlation in mixed linear models

The mixed model extends the standard linear model by allowing a more flex-

ible specification of the covariance matrix of e. In other words, it allows for

both correlation and heterogeneous variances. The mixed model is written as

y ¼ Xbþ Zcþ e

where y is the vector of the response variable, X is the known matrix of the

explanatory effects, b is unknown fixed-effects parameter vector, Z is the

known matrix of the random effects, c is unknown random-effects parameter

vector, e is the vector of measurement errors (assumed independent and

identically distributed (IID) in the case of standard linear model), and c and

e are normally distributed with covariance matrices G and R, respectively.

The variance-covariance matrix of Y is V=(ZGZ¢+R).
Likelihood-based methods are used to get b, SAS PROC MIXED

employs two different methods: maximum likelihood (ML) and restricted

maximum likelihood (REML). REML was favored, in this paper, because its

estimators are obtained not from maximizing the whole likelihood function,

as in the case of ML, but only the part that is invariant to the fixed-effect

parameters vector b (Littell et al. 1996).

3.3. Covariance structure V of the error components e

Three different variance-covariance structures (forms of R; recall, in this paper

V=R) are used including the independent case. Verbeke and Molenberghs

(2000) provide more forms for R. Guerin and Stroup (2000) documented the

effects of various variance-covariance structures.

1. Independent Structure, it assumes complete independence over the

error term components. This means that any two observations in the data
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are independent from each other. It has one known variable (r2) that is the

variance of the residuals.

covðyij; yikÞ ¼ r2 j=k
0 j6=k

�
e.g:;! R3�3 ¼

r2 0 0
r2 0

r2

2
4

3
5 ¼ r2I3�3

2. Compound symmetry (CS), it assumes constant variance and constant

covariance for the error terms. This means that the correlation between any

two repeated choices is equal. Therefore, the error components for all the

observations are equal. It has 2 unknown variables to be estimated by

REML.

covðyij;yikÞ ¼
r2 þ r2

1 j=k
r2
1 j 6=k

�
e.g:;! R3�3 ¼

r2 þ r2
1 r2

1 r2
1

r2 þ r2
1 r2

1

r2 þ r2
1

2
4

3
5

3. Unstructured (UN), it specifies a completely general covariance matrix

parameterized directly in terms of variances and covariances. It assumes dif-

ferent correlation between any two choices within a subject. This means that

the correlation between any two repeated choices made by a certain subject

is independent of the correlation between any other two choices made by the

same subject. Therefore, the error component for each observation is inde-

pendent from the other error components. It has (ni(ni+1)/2) unknown

parameters to be estimated by REML.

Corrðyij; yikÞ ¼ rij e.g:;! R3�3 ¼
r2
1 r12 r13

r2
2 r23

r2
3

2
4

3
5

4. Simulator description

The Orlando transportation experimental simulation program (OTESP) was

used to collect multidimensional route choice data. OTESP is an interactive

windows-based computer simulation tool. It simulates commuter home-

to-work morning trips. A portion of the city of Orlando network was cap-

tured from a GIS database (Figure 1). The network is located in an urban

area and consists in 25 nodes and 40 links. This network has been carefully

chosen from the Orlando network. It comprises different types of highways.

It includes a 6-lane principle arterial, a 4-lane principle arterial, a 6-lane

minor arterial, a 2-lane minor arterial, and local collectors. The network also

includes two expressways.

The subject is presented with a real map of the network and has the abil-

ity to move his/her vehicle on the network from one intersection to another.
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OTESP’s code is fed with real historical traffic volumes on all network links.

Based on these volumes, the geometric characteristics of the network road-

ways, and the HCM standards, the simulator generates a random speed for

every link on the network. This generated speed accounts for delays caused

by intersections, recurring congestion, non-recurring congestion (incident),

queuing at toll plazas, and weather condition effects. All link’s speeds are

updated every time the subjects approach an intersection. The generated

speeds on connected links are correlated because they are derived from real

volumes which are correlated. The speed of a link, at a certain movement,

controls the speed of the simulated vehicle so that the subject feels the delay.

OTESP was distinctively designed to give the subject the feel of a realistic

situation. Therefore, the simulator does not interfere with the accuracy of

the information, whatever speed is generated for a particular movement

(whether the travel time is provided to the subject or not) is assumed accu-

rate for the current movement. The simulator provides the travel time value

on every link as quantitative information while every link on the map takes

a color representing its traffic congestion (green, yellow, or red for free,

moderate, or congested flow). Therefore, the information provided is both

descriptive and prescriptive. Figure 2 shows an example of the OTESP’s

user-interface and network.

At every trial day, OTESP provides one of five different scenarios (levels)

of information/advice to the subject including: no information (scenario #1),

pre-trip information without and with advice (scenarios #2 and #3, respec-

Figure 1. OTESP’s network: codes for its nodes and links.
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tively), and en-route information (in addition to the pre-trip information)

without and with advice (scenarios #4 and #5, respectively). The subject is

presented with these 5 scenarios, respectively, i.e., Scenario 1 then 2 until 5.

Then the simulator repeats these 5 scenarios again to the subject and in the

same order. This order facilitates the analysis process and the comparisons

between the scenarios. During the actual experiment, the subject is required

to complete these ten simulated days (two days for each scenario). In the 5

scenarios, the information (pre-trip en-route) is provided in two forms. First,

giving all links on the network colors that represent their congestion levels

(green, yellow, or red for free, moderate, or congested flows, respectively).

Second, the travel time of every link is given. These two forms represent

qualitative and quantitative information, respectively. Scenario 5 also pro-

vides an advised route from the subject’s location to the destination.

The first 5 trial days for every subject (one per scenario) are named the

first-trial-days. Similarly, the next 5 trial days are named the last-trial-days.

In the first-trial-days, the subjects were assumed to be non-familiar with the

device that disseminates the information. On the other hand, they were

assumed familiar in the last-trial-days. There is no difference in the travel

time computations across the scenarios. The differences between the five sce-

narios are only in the level of the information/advice provided to the sub-

jects and whether they are pre-trip or en-route. OTESP also provides three

Figure 2. A spot view for OTESP (shown is scenario #5).
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different weather conditions (clear sky, light rain, and heavy rain). The

Moore’s shortest path algorithm (Pallottino & Grazia 1988) has been

employed in the code of OTESP to determine the travel-time-based shortest

path from any node to the destination, which is introduced as advice to the

subjects in some scenarios. The simulator starts and ends with a short survey

to collect the subject’s socio-demographic characteristics, preferences, percep-

tions, and feedback. A four-table database is created to capture all the infor-

mation/advice provided and the traveler decisions. For detailed design and

description of the simulator and the network, the reader is referred to Abda-

lla (2003) and Abdel-Aty and Abdalla (2002).

5. Data collection

Subjects were recruited from the University of Central Florida (UCF) using

an experimental design based on their age and gender. They included fac-

ulty, staff, graduate and undergraduate students. In this paper, the driver

characteristics that were investigated include gender, age, income, level of

education, and driving experience. Students were chosen to represent

low-income, young, less driving experience, and moderate level of education.

Faculty members were chosen to represent high level of education and

income. Staff members were chosen to fill up the empty cells in the experi-

mental design as they include a wide range of age and income. In addition,

the authors meant to recruit all subjects from UCF (which is the destination

of the network used) to be their real destination in their morning commute

trips. About 12% of the subjects were in their first 2 weeks of attending

UCF, representing non-familiar travelers. While we acknowledge that the

sample is not a random sample of the population due to funding limitations,

as mentioned above a concerted effort was carried out to obtain a represen-

tative sample based on an experimental design from UCF (40,000 student

population + 2000 faculty and staff).

Subjects were instructed that their main task is to minimize the overall

trip travel time by deciding when to and when not to follow the information

and/or advice provided. Subjects have been asked not to go through the sim-

ulation unless they had at least 30 mins of spare time (the average simula-

tion time was found to be 23.77 mins) and were willing to concentrate and

do their best in their choices. Moreover, during the simulation, the subject’s

response time was measured without notifying them, to insure that they were

serious. A total of 65 subjects had run the simulation. Two subjects out of

the 65 have been excluded from this study because their response time were

found to be outliers in the normal distribution plotting of subject’s response

time (Z=3.21 and 3.78, Zcr=2.57).

71



6. Travel time analysis

A total of 630 trial days (trips) were completed by the 63 qualified subjects.

Out of these 630 trial days, 539 were in the drive mode and 91 were in the

transit (bus) mode. The analysis of this paper focuses on the drive mode.

The simulator calculates and saves the cumulative total travel time of the

trip as the subject moves the simulated vehicle until the destination. The

overall average travel time of the 539 trial days was found to be 21.7 mins.

The results showed that scenario 1 held the maximum average travel time

(26.45 mins). Figure 3 provides a graphical display for the average travel

time for the first and last trial-days of each scenario. Average travel time in

all scenarios was less in the last trial-days indicating a learning effect which

leads to drivers making route decisions that reduce their travel time. Figure 3

shows that the average travel time gradually decreases from scenario 1 to 5.

This means that as the level of information/advice increases the travel time

decreases.

6.1. Modeling the trip travel time

The aforementioned analysis shows the positive influence of providing traffic

information/advice on the travel time. A mixed linear model with repeated

observations was used to get better understanding of this influence and to
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measure the marginal effects of the different significant variables that affect

the travel time. Three different variance-covariance structures were used and

compared (Independent case, CS, and the UN) to ensure the validity of the

statistical analysis. The 539 trips were in the data used. The travel time is the

dependent variable. The explanatory variables are:

1. Education level; ‘‘1’’ if graduate school or higher, ‘‘0’’ otherwise

2. Information familiarity; ‘‘1’’ if subject uses pre-trip and/or en-route traf-

fic information usually or everyday, ‘‘0’’ otherwise

3. Network familiarity; ‘‘1’’ if subject is familiar with the network, ‘‘0’’

otherwise

4. Pre-trip information; ‘‘1’’ for scenario 2, ‘‘0’’ otherwise

5. Pre-trip information/advice; ‘‘1’’ for scenario 3, ‘‘0’’ otherwise

6. En-route information; ‘‘1’’ for scenario 4, ‘‘0’’ otherwise

7. En-route information/advice; ‘‘1’’ for scenario 5, ‘‘0’’ otherwise

8. System learning; ‘‘1’’ for the last-trial-days of the experiment, ‘‘0’’ for

the first-trial-days

9. Light rain; ‘‘1’’ for light rain condition, ‘‘0’’ for heavy rain or clear sky

10. Heavy rain; ‘‘1’’ for heavy rain condition, ‘‘0’’ for light rain or clear sky

Table 1 shows the parameter estimates with a comparison between the

three covariance structures CS, and UN as well as the independent. The

maximum number of repeated choices per subject was ten. Therefore, the

number of unknown and estimated parameters in the covariance matrices

were [1], [2], [10 (11)/2 = 55] for the Independent case, CS, HF, and UN,

respectively. Shown in Table 1, the likelihood ratio test (between the conver-

gent versus restricted models) for the three structures proved that the explan-

atory variables could statistically explain the response variable. These three

structures are nested within each other, or in other words, one is a special

case of the other (Littell et al. 1996). Then a restricted likelihood ratio test

can be performed with the test statistic equal to twice the difference between

the two log likelihoods which follows a Chi-squared distribution with de-

grees of freedom that equals the difference in the number of parameters to

be estimated in the two covariance matrices. This test can be used to favor

one structure over the other (SAS, 2003). For example, to compare between

the CS and UN structures, the v2 test static was 124.6 with degrees of free-

dom =53 (55 )2). Therefore, the test was significant and favored the UN

structure over the CS structure. The bottom part of Table 1 has the results

of three similar Chi-square tests. These 3 tests proved that the UN structure

is favored over the other two structures. Akaike information criteria (AIC),

better model has a smaller AIC value (Wolfinger & Chang 1996), agreed

with these results as the UN structure has the least AIC value. Therefore,

the unstructured covariance matrix is the best structure for this model. This
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also shows that the correlation between repeated choices made by the same

subject is significant in this model and had to be accounted for.

Table 1 shows the coefficient estimates. The estimate of the intercept was

relatively high when compared to the other coefficients. This was reasonable,

because the intercept represents the expected average travel time when all

explanatory variables are zero. The model results showed that highly-

educated drivers had longer travel times. Drivers who were familiar with

traffic information and those who were familiar with the network had rela-

tively less travel time. Providing pre-trip information without advice could

result in a relative reduction in travel time of 4.5 mins compared to no infor-

mation (4.5/21.71 = 20.7% of the average origin-to-destination travel time

on the network). Providing pre-trip information with advice reduces the tra-

vel time by 28.6%. Providing pre-trip and en-route information without ad-

vice reduces the travel time by 25.3%. Providing pre-trip and en-route

information with advice provide relative reduction of the travel time by

44.7%. By comparing the last four variables, it can be noticed that adding

advice to the advice-free pre-trip information increases the travel time saving

from 20.7% to 28.6%. Similarly, adding advice to the advice-free en-route

information increases the travel time saving from 25.3% to 44.7%. Adding

en-route to the pre-trip information increases the travel time saving from

20.7% to 25.3% in the case of providing information without advice and

from 28.6% to 44.7% in the case of information with advice. In general, the

travel time saving ranges from 20.7% to 44.7% due to ATIS. Many studies

have looked into travel time saving due to ATIS, however, only a few of

them have looked into and compared the travel time saving under more than

one type/level of ATIS. This model analyzes the origin-to-destination travel

time under 5 different types and levels of ATIS. The results also showed that

familiarity with the system that provides the information reduces the travel

time by 11.01%. Light and heavy rain conditions increase the travel time by

9.12% and 17%, respectively. Other factors including age, gender, income,

and driving experience were tested and found not correlated with the travel

time saving due to ATIS.

Table 2 shows the estimated 10-by-10 symmetric unstructured correlation

matrix. The maximum correlation was 0.473 and the minimum was 0.001.

We were not able to derive any evidence of a fixed trend of how the correla-

tion between the choices increases (decreases) depending on the order of the

choices. This underscores an open point for future research.

7. Short-term travel time (link) analysis

At each node in the simulator, the subject is required to make a decision and

choose between the coming links. It was noticed that all the link movements
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had the direction west-to-east or south-to-north (this was expected because the

destination is located north-east of the origin). Therefore, it was assumed that

there are two link-alternatives (the east and north links) when the subject

reaches a new node. The simulator assists the subject to choose between these

two links by providing short-term (link) traffic information in scenarios #4

and 5 (scenarios #1, 2 and 3 provide no en-route traffic information).

Throughout this study, 4753 movements (decisions) have been made

through the 40 links of the network. Out of them, 1667 movements were

excluded from the analysis because the subject had no choice but to proceed

on to the unique coming link. This happens at the most east, west, and north

nodes of the network (see Figure 1). Out of the remaining 3086, Figure 4

shows the percentage of choices in which the subjects followed the link infor-

mation provided (by choosing the link that had less level of congestion) versus

the choices that did not follow the information (by choosing the link that had

a higher level of congestion). The percentages presented in Figure 4 are catego-

rized by the information type. The highest difference occurred in scenario 4,

where en-route information is provided. Scenario 5, where an advised route

from the driver’s position to the destination is also provided, holds the second

highest difference. The first three scenarios aggregated together, where no

en-route information is provided, have the least difference. Using the v2 test,

the number of choices that followed the information provided occurred in sce-

narios #4 and #5 were found significantly greater than those of the other 3 sce-

narios (v2=10.55, p-value < 0.001). This underlines the benefits of en-route

information on short-term driver’s route choices (link choices).

7.1. Modeling short-term en-route link travel time

The 3086 link choices were the data used in this model. The mixed linear

model with repeated observations was employed. At every link choice, the

delay on the link that has not been chosen minus that of the chosen link

Table 2. The estimated parameters of the unstructured correlation matrix.

Choice # 1 2 3 4 5 6 7 8 9 10

1 1 0.388 0.031 0.242 0.060 0.332 0.073 0.140 0.096 0.061

2 1 0.020 0.030 0.220 0.237 0.091 0.018 0.083 0.130

3 1 0.273 0.129 0.175 0.078 0.134 0.025 0.315

4 1 0.138 0.117 0.114 0.107 0.045 0.082

5 1 0.078 0.005 0.073 0.001 0.189

6 1 0.437 0.060 0.293 0.048

7 1 0.041 0.151 0.008

8 1 0.169 0.100

9 1 0.037

10 1
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represents the dependent variable of the model. This represents the amount

of the travel time saving if the subject chooses the link with less delay. It

also represents the amount of extra delay if the subject chooses the link with

more delay. In both cases, the response variable is the difference in delay

between two links not the absolute delay of the chosen link. The delay of a

link, at a certain movement, was taken as equal to its actual travel time

minus its free flow travel time. The value of the response variable represents

the travel time saving that a subject achieved by following the short-term

traffic information provided. A negative response value means that the sub-

ject was delayed (for the short-term) by choosing the more congested link.

While if he/she had chosen the other link then the delay would have been re-

duced. The explanatory variables are:

1. Information familiarity; 1 if subject uses pre-trip and/or en-route traffic

information usually or everyday, ‘‘0’’ otherwise

2. Information provision; 1 for scenario 4 where en-route information is

provided without advice, 0 otherwise

3. Same color; 1 if the two coming links had the same color (qualitative con-

gestion level), 0 otherwise. This variable tests the effect of qualitative ver-

sus quantitative information

4. System learning; 1 for the second 5 trial days of the simulator, ‘‘0’’ for

the first 5 trial days

5. Number of movements from the origin

Table 3 shows the parameter estimates with a comparison between the

CS and the independent case. The maximum number of repeated choices per
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Figure 4. Percent of link choices that followed or did not follow versus information/advice cate-

gory.
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subject was 71. The number of unknown and necessarily estimated parame-

ters in the covariance matrices were [1], [2], [71 (72)/2 = 2,556] for the Inde-

pendent, CS, and UN structure, respectively. Therefore, the UN correlation

matrix was not appropriate for this model. Shown in Table 3, the likelihood

ratio test (between the convergent versus restricted models) proved that the

explanatory variables could statistically explain the response variable. The

independent case is a special case of the CS correlation structure (Littell et

al. 1996), then a restricted likelihood ratio test with test statistic equal to

twice the difference between the two log likelihoods follows a Chi-squared

distribution with degrees of freedom equal to the difference in the number of

parameters to be estimated in the covariance matrices. The v2 test results

showed that the CS structure was the best. AIC agreed with these results as

the CS structure has the smallest AIC value.

The modeling results showed that the en-route short-term information

(link) has a good chance to be used and followed. Drivers familiar with the

traffic information had relatively less short-term delay or more short-term

travel time saving under ATIS. Providing en-route short-term traffic infor-

Table 3. Results of short-term travel time model.

Independent CS

Coeff. t-static Coeff. t-static

Intercept 1.969 3.47 1.893 3.56

Info-familiarity; 1 if subject uses pre-trip

and/or en-route traffic information usually

or everyday, 0 otherwise

0.899 3.53 0.958 3.38

Info-provision: 1 for scenario 4 where

en-route information is provided without

advice, 0 otherwise

0.560 2.67 0.590 2.78

Same color: 1 if the two coming links were

with the same color (qualitative congestion

level), 0 otherwise

)0.661 )4.11 )0.659 )4.29

System learning: 1 for the second 5 trial days

of the experiment, 0 for the first 5 trial days

2.967 60.08 2.962 61.17

Number of movements since the origin 4.361 43.45 4.319 43.89

Interaction term

Number of movements since the origin

* System-learning

4.834 42.36 4.783 42.82

Summary statistics

Sample size = 3086

Log likelihood at zero [L (c)] )10478.4 )10477.9
Log likelihood at convergence [L (b)] )8978.5 )8972.1
LR statistic = 2 [L(b))L (c) ], D.O.F = 6 2999.8 3011.5

AIC 17957.3 17948.1

Chi-square test results to compare between the three covariance structures used:

LR (CS versus Indep.); v2stat.=12.8; D.O.F=2)1=1; Favors CS.
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mation was shown to reduce travel time. This indicates the significance of

en-route information in short-term choices. Advice was not important since

it addresses the long-term (whole route). Learning and being familiar with

the system that provides the information also reduces the short-term delay.

When being away from the origin, i.e. close to the destination (presented by

the number of movements since the origin), drivers had less delay. This

means that drivers are more likely to follow the short-term information

when they get closer to the destination. It is worth mentioning that system

learning and the number of movements have high t-statistics indicating small

standard errors given the relatively large coefficient estimates. These two

variables are highly significant in the presence of the other factors. When the

two coming links had the same qualitative level of congestion drivers experi-

enced higher delays. It can be concluded that the qualitative information is

more likely to be used than the quantitative information. Other factors

including; age, gender, income, driving experience, familiarity with the net-

work, weather conditions, and frequency use of expressways are tested and

found to be uncorrelated with the response variable. Unlike most of the

existing studies including the first model of this paper, this model analyzes

en-route link travel time under different types and levels of ATIS.

8. Conclusions

This paper investigates the factors that affect driver’s accessing and benefit-

ing from real-time pre-trip and en-route traffic information with/without

advice. Origin-to-destination and node-to-node travel time were modeled

separately. A travel simulator with realistic network and real historical vol-

umes was used to collect dynamic route choice data. The simulator provided

five different types and levels of ATIS. The Mixed Linear Model with the

repeated observation’s technique was used for both models. The correlation

was found to be significant in both models, which underlines the importance

of accounting for correlation in similar studies. Different variance-covariance

structures (Independent, CS, and the UN) were used and compared to ensure

the validity of the statistical analysis.

The results showed that as the level of information increases (adding

en-route to the pre-trip and advice to the advice-free-information) the average

travel time decreases. Drivers saved up to 44.7% of the overall travel time

when equipped with pre-trip and en-route information with advice, relative to

no information. The results showed that driver’s who are familiar with traffic

information, the network, and the system that provides the information had

relatively less delay. The link choice analysis showed that providing en-route

short-term traffic information reduces the en-route delay. Learning and being
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familiar with the system that provides the information and being close to the

destination increase the usage of the en-route information and therefore reduce

the en-route delay. The qualitative information is more likely to be used than

the quantitative information.

This paper underlines the importance of modeling the temporal correla-

tion between repeated choices made by the same traveler. Considering differ-

ent correlation structures is also important and depends on the nature of the

existing correlation and on the sample size. The paper addresses the benefits

and use of ATIS in route choice in a microscopic level (one driver at a

time). Future work should address the issue of market penetration which

will likely affect the performance of the network.
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