Digital Logic Design

Combinational Logic

Minterms

- A product term is a term where literals are ANDed.
 - Example: x'y', xz, xyz, ...
- A <u>minterm</u> is a product term in which all variables appear exactly once, in normal or complemented form
 - Example: F(x,y,z) has 8 minterms: x'y'z', x'y'z, x'yz', ...
- In general, a function with n variables has 2ⁿ minterms
- A minterm equals 1 at exactly one input combination and is equal to 0 otherwize
 - Example: x'y'z' = 1 only when x=0, y=0, z=0
- A minterm is denoted as m_i where i corresponds the input combination at which this minterm is equal to 1

Minterms

Minterms for Three Variables

Src: Mano's book

x	Y	z	Product Term	Symbol	m _o	m ₁	m ₂	m ₃	m₄	m₅	m ₆	m ₇
0	0	0	$\overline{X}\overline{Y}\overline{Z}$	m ₀	1	0	0	0	0	0	0	0
0	0	1	$\overline{X}\overline{Y}Z$	m_1	0	1	0	0	0	0	0	0
0	1	0	$\overline{X}Y\overline{Z}$	m ₂	0	0	1	0	0	0	0	0
0	1	1	$\overline{X}YZ$	m3	0	0	0	1	0	0	0	0
1	0	0	$X\overline{Y}\overline{Z}$	m_4	0	0	0	0	1	0	0	0
1	0	1	$X\overline{Y}Z$	m ₅	0	0	0	0	0	1	0	0
1	1	0	$XY\overline{Z}$	m ₆	0	0	0	0	0	0	1	0
1	1	1	XYZ	m ₇	0	0	0	0	0	0	0	1
	m _i indicated the i th minterm											
Varia Varia	ariable complemented if 0 Ariable uncomplemented if 1											

Maxterms

- A **<u>sum term</u>** is a term where literals are ORed.
 - Example: x'+y', x+z, x+y+z, ...
- A <u>maxterm</u> is a sum term in which all variables appear exactly once, in normal or complemented form
 - Example: F(x,y,z) has 8 maxterms: (x+y+z), (x+y+z'), (x+y'+z), ...
- In general, a function with n variables has 2ⁿ maxterms
- A maxterm equals 0 at exactly one input combination and is equal to 1 otherwize
 - Example: (x+y+z) = 0 only when x=0, y=0, z=0
- A maxterm is denoted as M_i where i corresponds the input combination at which this maxterm is equal to 0

Maxterms

Src: Mano's book

Maxterms for Three Variables

X	Υ	Z	Sum Term	Symbo	I M _o	M_1	M_2	М₃	M_4	M_5	M ₆	M ₇
0	0	0	X + Y + Z	M_0	0	1	1	1	1	1	1	1
0	0	1	$X + Y + \overline{Z}$	M_1	1	0	1	1	1	1	1	1
0	1	0	$X + \overline{Y} + Z$	M_2	1	1	0	1	1	1	1	1
0	1	1	$X + \overline{Y} + \overline{Z}$	M_3	1	1	1	0	1	1	1	1
1	0	0	$\overline{X} + Y + Z$	M_4	1	1	1	1	0	1	1	1
1	0	1	$\overline{X} + Y + \overline{Z}$	M_5	1	1	1	1	1	0	1	1
1	1	0	$\overline{X} + \overline{Y} + Z$	M ₆	1	1	1	1	1	1	0	1
1	1	1	$\overline{X} + \overline{Y} + \overline{Z}$	M ₇	1	1	1	1	1	1	1	0
			$\widehat{1}$									
				N	/l _i indicate	<mark>d the</mark> the b	i th ma inary	axtern comb	า oinatio	n		
Variable complemented if 1 M _i is equal to 0 for ONLY THAT combination							inatio	n				
varia	vanable not complemented if U											

Minterms and Maxterms

In general, a function of n variables has

- 2ⁿ minterms: m₀, m₁, ..., m_{2ⁿ-1}
- 2ⁿ maxterms: M₀, M₁, ..., M_{2ⁿ-1}

Minterms and maxterms are the complement of each other!

$$M_i = \overline{m_i}$$
 $\forall i = 0, 1, 2, \dots, (2^n - 1)$

Example: F(X,Y):

$$m_2 = XY' \rightarrow m_2' = X'+Y = M_2$$

Expressing Functions with Minterms

 A Boolean function can be expressed algebraically from a give truth table by forming the logical sum (OR) of ALL the minterms that produce 1 in the function

Example:

Consider the function defined by the truth table

$$F(X,Y,Z) = X'Y'Z' + X'YZ' + XY'Z + XYZ = m_0 + m_2 + m_5 + m_7 = \Sigma m(0,2,5,7)$$

Х	Y	Ζ	m	F
0	0	0	m ₀	1
0	0	1	m_1	0
0	1	0	m ₂	1
0	1	1	m ₃	0
1	0	0	m ₄	0
1	0	1	m ₅	1
1	1	0	m ₆	0
1	1	1	m_7	1

Expressing Functions with Maxterms

• A Boolean function can be expressed algebraically from a give truth table by forming the logical product (AND) of ALL the maxterms that produce 0 in the function

Example:	Х	Y	Ζ	М	F	F ′
Consider the function defined by the truth table	0	0	0	M ₀	1	0
$F(X,Y,Z) = \prod M(1,3,4,6)$	0	0	1	M_1	0	1
	0	1	0	M ₂	1	0
Applying DeMorgan	0	1	1	M_3	0	1
$F' = m_1 + m_3 + m_4 + m_6$	1	0	0	M4	0	1
$= \Sigma m(1,3,4,6)$	1	0	1	Μ ₅	1	0
$F = F'' = [m_1 + m_3 + m_4 + m_6]'$	1	1	0	M_6	0	1
$= m_1' \cdot m_3' \cdot m_4' \cdot m_6'$	1	1	1	M_7	1	0
$= M_1.M_3.M_4.M_6$						
$= \prod M(1,3,4,6) \qquad Note the indices in the present of the pres$	this list	are tho	se that	are		
	evious		m(0,2,3	, ')		

Sum of Minterms vs Product of Maxterms

- A Boolean function can be expressed algebraically as:
 - The sum of minterms
 - The product of maxterms
- Given the truth table, writing F as
 - $\sum_{i=1}^{\infty} m_i$ for all minterms that produce 1 in the table, or
 - ΠM_i for all maxterms that produce 0 in the table
- Minterms and Maxterms are complement of each other.

Example (Cont.)

Solution: Method2_a

E = Y' + X'Z' E= Y'(X+X')(Z+Z') + X'Z'(Y+Y') E' = (XY'+X'Y')(Z+Z') + X'YZ'+X'Z'Y' = XY'Z+X'Y'Z+XY'Z'+X'Y'Z'+ X'YZ'+X'Z'Y' = m₅ + m₁ + m₄ + m₀ + m₂ + m₀ E = m₀ + m₁ + m₂ + m₄ + m₅

 $= \Sigma m(0,1,2,4,5)$

To find the form Π Mi, consider the remaining indices E = Π M(3,6,7) Solution: <u>Method2_b</u> E = Y' + X'Z' E' = Y(X+Z) = YX + YZ = YX(Z+Z') + YZ(X+X') = XYZ+XYZ'+X'YZ E = (X'+Y'+Z')(X'+Y'+Z)(X+Y'+Z') $= M_7 \cdot M_6 \cdot M_3$ $= \Pi M(3,6,7)$

To find the form Σm_i , consider the remaining indices $E = \Sigma m(0,1,2,4,5)$

Question: F (a,b,c,d) = $\sum m(0,1,2,4,5,7)$, What are the _____ minterms and maxterms of F and and its complement F? Solution:

F has 4 variables; $2^4 = 16$ possible minterms/maxterms

F (a,b,c,d) =
$$\sum m(0,1,2,4,5,7)$$

= $\prod M(3,6,8,9,10,11,12,13,14,15)$

$$F (a,b,c,d) = \sum m(3,6,8,9,10,11,12,13,14,15) = \Pi M(0,1,2,4,5,7)$$

Canonical Forms

The sum of minterms and the product of maxterms forms are known as the <u>canonical forms</u> (الصيغ القانونية) of a function.

Standard Forms

- Sum of Products (SOP) and Product of Sums (POS) are also standard forms
 - AB+CD = (A+C)(B+C)(A+D)(B+D)
- The sum of minterms is a special case of the SOP form, where all product terms are minterms
- The product of maxterms is a special case of the POS form, where all sum terms are maxterms

SOP and POS Conversion

 $SOP \rightarrow POS$ $POS \rightarrow SOP$

F = AB + CD

- = (AB+C)(AB+D)
- = (A+C)(B+C)(AB+D)
- = (A+C)(B+C)(A+D)(B+D)

Hint 1: Use X+YZ=(X+Y)(X+Z)

Hint 2: Factor

F = (A'+B)(A'+C)(C+D)

= (A'+BC)(C+D)

- = A'C+A'D+BCC+BCD
- = A'C+A'D+BC+BCD
- = A'C+A'D+BC

Hint 1: Use i (X+Y)(X+Z)=X+YZ

Hint 2: Multiply

Question1: How to convert SOP to sum of minterms? Question2: How to convert POS to product of maxterms?

Implementation of SOP

Any SOP expression can be implemented using a

2-levels of gates

The 1st level consists of AND gates, and the 2nd level consists of a single OR gate

Also called 2-level Circuit

Two-Level Implementation (F = XZ + Y^{*}Z + X^{*}YZ) Level-1: AND-Gates ; Level-2: One OR-Gate

Implementation of POS

Any POS expression can be implemented using a 2-levels of gates

The 1st level consists of OR gates, and the 2nd level consists of a single AND gate

Also called 2-level Circuit

 $[\]label{eq:two-Level Implementation} \begin{array}{l} \{F = (X+Z)(Y+Z)(X+Y+Z)\} \\ \\ \mbox{Level-1: OR-Gates} \hspace{0.2cm} ; \hspace{0.2cm} \mbox{Level-2: One AND-Gate} \end{array}$

Simplification

- Simplification using Algebra
- Simplification using Karnaugh Maps (K-Maps)

Simplification using Algebra

F = X'YZ + X'YZ' + XZ= X'Y(Z+Z') + XZ = X'Y.1 + XZ = X'Y + XZ

- Simplification may mean different things
- here it means less
 number of literals

Simplification Revisited

- Algebraic methods for minimization is limited:
 - No formal steps, need experience.
 - No guarantee that a minimum is reached
 - Easy to make mistakes
- Karnaugh maps (k-maps) is an alternative convenient way for minimization:
 - A graphical technique
 - Introduced by Maurice Karnaugh in 1953
- K-maps for up to 4 variables are straightforward to build
- Building higher order K-maps (5 or 6 variable) are a bit more cumbersome
- Simplified expression produced by K-maps are in SOP or POS forms

Gray Code & Truth Table Adjacencies

•Remember that Only one bit changes with each number increment in gray codes

K-Map

А	В	F
0	0	0
0	1	1
1	0	0
1	1	1

A different way to draw a truth table !

Take advantage of adjacency and gray codes

Keep common literal only!

Minimization (Simplification) with K-maps

- 1. Draw a K-map
- 2. Combine maximum number of 1's following rules:
 - 1. Only adjacent squares can be combined
 - 2. All 1's must be covered
 - 3. Covering rectangles must be of size 1,2,4,8, \dots 2ⁿ
- 3. Check if all covering are really needed
- 4. Read off the SOP expression

2-variable K-map

Given a function with 2 variables: F(X,Y), the total number of minterms are equal to 4:

m₀, m₁, m₂, m₃

- The size of the k-map is always equal to the total number of minterms.
 - Each entry of the k-map corresponds to one minterm for the function:
 - Row 0 represents: X'Y', X'Y
 - Row 1 represents: XY', XY'

For a given function F(X,Y) with the following truth table, minimize it using k-maps

Combining all the 1's in only the adjacent squares

The final reduced expression is given by the common literals from the combination:

Therefore, since for the combination, Y has different values (0, 1), and X has a fixed value of 1,

The reduced function is: F(X,Y) = X

- Q. Simplify the function $F(X,Y) = \sum m(1,2,3)$
- Sol. This function has 2 variables, and three 1-squares (three minterms where function is 1)

2 variable K-Maps (Adjacency)

In an n-variable k-map, each square is adjacent to exactly *n* other squares

Q: What if you have 1 in all squares?

The boolean function does not depend on the variable, so it is a fixed logic 1

3-variable K-maps

- > For 3-variable functions, the k-maps are larger and look different.
- Total number of minterms that need to be accommodated in the kmap = 8

3-variable K-maps

Note: You can only combine a power of 2 adjacent 1-squares. For e.g. 2, 4, 8, 16 squares. You cannot combine 3, 7 or 5 squares

- Minterms m_o, m₂, m₄, m₆ can be combined as m₀ and m₂ are adjacent to each other, m₄ and m₆ are adjacent to each other
- \rightarrow m_o and m₄ are also adjacent to each other, m₂ and m₆ are also adjacent to each other

Simplify $F = \sum m(1, 3, 4, 6)$ using K-map

Simplify $F = \sum m(1, 3, 4, 6)$ using K-map

Simplify $F = \sum m(0,1, 2, 4, 6)$ using K-map

Simplify $F = \sum m(0,1, 2, 4, 6)$ using K-map

3 variable K-Maps (Adjacency)

A 3-variable map has 12 possible groups of 2 minterms

They become product terms with 2 literals

Ahmad Almulhem, KFUPM 2010

3 variable K-Maps (Adjacency)

A 3-variable map has 6 possible groups of 4 minterms

They become product terms with 1 literals

Ahmad Almulhem, KFUPM 2010

4-variable K-maps

A 4-variable function will consist of 16 minterms and therefore a size 16 k-map is needed

Each square is adjacent to 4 other squares A square by itself will represent a minterm with 4 literals Combining 2 squares will generate a 3-literal output Combining 4 squares will generate a 2-literal output Combining 8 squares will generate a 1-literal output

4-variable K-maps (Adjacency)

Note: You can only combine a power of 2 adjacent 1-squares. For e.g. 2, 4, 8, 16 squares. You cannot combine 3, 7 or 5 squares

- Right column and left column are adjacent; can be combined
- Top row and bottom column are adjacent; can be combined
- Many possible 2, 4, 8 groupings

Minimize the function $F(A,B,C,D) = \sum m(1,3,5,6,7,8,9,11,14,15)$

F = CD + A'D + BC + AB'C'

 $F(A,B,C,D) = \Sigma m(0,1,2,5,8,9,10)$

Ahmad Almulhem, KFUPM 2010

 $F(A,B,C,D) = \Sigma m(0,1,2,5,8,9,10)$

Using (POS)

$F(A,B,C,D) = \Sigma m(0,1,2,5,8,9,10)$

Write F in the simplified product of sums (POS) not (SOP)

Two methods? You already know one!

Using (POS)

 $F(A,B,C,D) = \Sigma m(0,1,2,5,8,9,10)$

Write F in the simplified product of sums (POS) not (SOP)

- Follow same rule as before but for the ZEROs
 - F' = AB + CD + BD'
- > Therefore,

F'' = F = (A'+B')(C'+D')(B'+D)

Don't Cares

- In some cases, the output of the function (1 or 0) is not specified for certain input combinations either because
 - The input combination never occurs (Example BCD codes), or
 - We don't care about the output of this particular combination
- Such functions are called incompletely specified functions
- Unspecified minterms for these functions are called don't cares
- While minimizing a k-map with don't care minterms, their values can be selected to be either (1 or 0) depending on what is needed for achieving a minimized output.

$$F = \sum m(1, 3, 7) + \sum d(0, 5)$$

Circle the x's that help get bigger groups of 1's (or 0's if POS).

Don't circle the x's that don't help.

F = C

 $F(A, B, C, D) = \sum m(1, 3, 7, 11, 15) + \sum d(0, 2, 5)$

5-variable K-maps

- 32 minterms require 32 squares in the k-map
- Minterms 0-15 belong to the squares with variable A=0, and minterms 16-32 belong to the squares with variable A=1
- Each square in A' is also adjacent to a square in A (one is above the other)
- Minterm 4 is adjacent to 20, and minterm 15 is to 31

Finding the minimum SOP

Definitions

- An implicant is a product term of a function
 - Any group of 1's in a K-Map
- A prime implicant is a product term obtained by combining the maximum possible number of adjacent 1's in a k-map
 - Biggest groups of 1's
 - Not all prime implicants are needed!
- If a minterm is covered by exactly one prime implicant then this prime implicant is called an essential prime implicant

Consider $F(X,Y,Z) = \Sigma m(1,3,4,5,6)$

List all implicants, prime implicants and essential prime implicants

Solution:

```
Implicants: XY'Z', XZ', XY', XY'Z, X'Y'Z,
Y'Z, .....
```

```
Prime Implicants: XY', XZ', Y'Z, X'Z
```

EPIs: X'Z, XZ'

The simplest expression is NOT unique!

Finding minimum SOP

- 1. Find each essential prime implicant and include it in the solution
- 2. If any minterms are not yet covered, find minimum number of prime implicants to cover them (minimize overlap).

Simplify F(A, B, C, D) = $\sum m(0, 1, 2, 4)$ 5, 10,11,13, 15)

Note:

-Only A'C' is E.P.I

-For the remaining minterms: -Choose 1 and 2 (minimize overlap) -For m_2 , choose either A'B'D' or B'CD' F = A'C' + ABD + AB'C + A'B'D'

NAND Gate is Universal

Therefore, we can build all functions we learned so far using NAND gates ONLY *(Exercise: Prove that NOT can be built with NAND)*NAND is a UNIVERSAL gate

Graphic Symbols for NAND Gate

Two equivalent graphic symbols or shapes for the SAME function

AND-NOT = NOT-OR

Implementation using NANDs

Implementation using NANDs

Consider F = $\Sigma m(1,2,3,4,5,7)$ – Implement using NAND gates

F(X,Y) = Z + XY' + X'Y

Rules for 2-Level NAND Implementations

- 1. Simplify the function and express it in <u>sum-of-</u> products form
- 2. Draw a NAND gate for each product term (with 2 literals or more)
- Draw a single NAND gate at the 2nd level (in place of the OR gate)
- 4. A term with single literal requires a NOT

NOR Gate is Universal

Therefore, we can build all functions we learned so far using NOR gates ONLY *(Exercise: Prove that NOT can be built with NOR)*NOR is a UNIVERSAL gate

Graphic Symbols for NOR Gate

Two equivalent graphic symbols or shapes for the SAME function

OR-NOT

NOT-AND

OR-NOT = NOT-AND

Implementation using NOR gates

Consider F = (A+B)(C+D)E

Implementation using NOR gates

Consider F = $\Sigma m(1,2,3,5,7)$ – Implement using NOR gates

F'(X,Y) = Y'Z'+XZ', or F(X,Y) = (Y+Z)(X'+Z)

Rules for 2-Level NOR Implementations

- 1. Simplify the function and express it in product of sums form
- 2. Draw a NOR gate (using OR-NOT symbol) for each sum term (with 2 literals or more)
- 3. Draw a single NOR gate (using NOT-AND symbol) the 2nd level (in place of the AND gate)
- 4. A term with single literal requires a NOT