
Digital Logic Design

Combinational Logic

Minterms

• A product term is a term where literals are ANDed.
• Example: x’y’, xz, xyz, …

• A minterm is a product term in which all variables appear
exactly once, in normal or complemented form
• Example: F(x,y,z) has 8 minterms: x’y’z’, x’y’z, x’yz’, ...

• �In general, a function with n variables has 2n minterms

• A minterm equals 1 at exactly one input combination and
is equal to 0 otherwize
• Example: x’y’z’ = 1 only when x=0, y=0, z=0

• A minterm is denoted as mi where i corresponds the input
combination at which this minterm is equal to 1

Minterms

Variable complemented if 0

Variable uncomplemented if 1

mi indicated the ith minterm

i indicates the binary combination

mi is equal to 1 for ONLY THAT combination

Src: Mano’s book

Maxterms

• A sum term is a term where literals are ORed.
• Example: x’+y’, x+z, x+y+z, …

• A maxterm is a sum term in which all variables appear
exactly once, in normal or complemented form
• Example: F(x,y,z) has 8 maxterms: (x+y+z), (x+y+z’), (x+y’+z), ...

• �In general, a function with n variables has 2n maxterms

• A maxterm equals 0 at exactly one input combination and
is equal to 1 otherwize
• Example: (x+y+z) = 0 only when x=0, y=0, z=0

• A maxterm is denoted as Mi where i corresponds the
input combination at which this maxterm is equal to 0

Maxterms

Src: Mano’s book

Variable complemented if 1

Variable not complemented if 0

Mi indicated the ith maxterm

i indicates the binary combination

Mi is equal to 0 for ONLY THAT combination

Minterms and Maxterms

In general, a function of n variables has
• 2n minterms: m0, m1, …, m2

n
-1

• 2n maxterms: M0, M1, …, M2
n
-1

Minterms and maxterms are the complement of

each other!

Example: F(X,Y):

m2 = XY’  m2’ = X’+Y = M2

Expressing Functions with Minterms

• A Boolean function can be expressed algebraically from a give truth
table by forming the logical sum (OR) of ALL the minterms that produce
1 in the function

Example:

X Y Z m F

0 0 0 m0 1

0 0 1 m1 0

0 1 0 m2 1

0 1 1 m3 0

1 0 0 m4 0

1 0 1 m5 1

1 1 0 m6 0

1 1 1 m7 1

Consider the function defined by the truth table

F(X,Y,Z) = X’Y’Z’ + X’YZ’ + XY’Z + XYZ

 = m0 + m2 + m5 + m7

 = Sm(0,2,5,7)

Expressing Functions with Maxterms

• A Boolean function can be expressed algebraically from a give truth
table by forming the logical product (AND) of ALL the maxterms that
produce 0 in the function

X Y Z M F F’

0 0 0 M0 1 0

0 0 1 M1 0 1

0 1 0 M2 1 0

0 1 1 M3 0 1

1 0 0 M4 0 1

1 0 1 M5 1 0

1 1 0 M6 0 1

1 1 1 M7 1 0

Example:

Consider the function defined by the truth table

F(X,Y,Z) =  M(1,3,4,6)

Applying DeMorgan

F’ = m1 + m3 + m4 + m6

 = Sm(1,3,4,6)

F = F’’ = [m1 + m3 + m4 + m6]’

 = m1’.m3’.m4’.m6’

 = M1.M3.M4.M6

 =  M(1,3,4,6) Note the indices in this list are those that are

missing from the previous list in Sm(0,2,5,7)

Sum of Minterms vs Product of

Maxterms

• A Boolean function can be expressed
algebraically as:
• The sum of minterms

• The product of maxterms

• Given the truth table, writing F as
• ∑mi – for all minterms that produce 1 in the table,

or

• Mi – for all maxterms that produce 0 in the table

• Minterms and Maxterms are complement of
each other.

Example (Cont.)

Solution: Method2_a

E = Y’ + X’Z’

 = Y’(X+X’)(Z+Z’) + X’Z’(Y+Y’)

 = (XY’+X’Y’)(Z+Z’) + X’YZ’+X’Z’Y’

 = XY’Z+X’Y’Z+XY’Z’+X’Y’Z’+
X’YZ’+X’Z’Y’

 = m5 + m1 + m4 + m0 + m2 + m0

 = m0 + m1 + m2 + m4 + m5

 = Sm(0,1,2,4,5)

To find the form Mi, consider the

remaining indices

 E = M(3,6,7)

Solution: Method2_b

E = Y’ + X’Z’

E’ = Y(X+Z)

 = YX + YZ

 = YX(Z+Z’) + YZ(X+X’)

 = XYZ+XYZ’+X’YZ

E = (X’+Y’+Z’)(X’+Y’+Z)(X+Y’+Z’)

 = M7 . M6 . M3

 = M(3,6,7)

To find the form Smi, consider the

remaining indices

 E = Sm(0,1,2,4,5)

Example

Question: F (a,b,c,d) = ∑m(0,1,2,4,5,7), What are the
minterms and maxterms of F and and its complement F?

Solution:

 F has 4 variables; 24 = 16 possible minterms/maxterms

 F (a,b,c,d) = ∑m(0,1,2,4,5,7)

 = Π M(3,6,8,9,10,11,12,13,14,15)

 F (a,b,c,d) = ∑m(3,6,8,9,10,11,12,13,14,15)

 = Π M(0,1,2,4,5,7)

Canonical Forms

The sum of minterms and the product of

maxterms forms are known as the

canonical forms (الصيغ القانونية) of a

function.

Standard Forms

• Sum of Products (SOP) and Product of
Sums (POS) are also standard forms
• AB+CD = (A+C)(B+C)(A+D)(B+D)

• The sum of minterms is a special case of
the SOP form, where all product terms are
minterms

• The product of maxterms is a special case
of the POS form, where all sum terms are
maxterms

SOP and POS Conversion

SOP  POS

F = AB + CD

 = (AB+C)(AB+D)

 = (A+C)(B+C)(AB+D)

 = (A+C)(B+C)(A+D)(B+D)

Hint 1: Use X+YZ=(X+Y)(X+Z)

Hint 2: Factor

POS  SOP

F = (A’+B)(A’+C)(C+D)

 = (A’+BC)(C+D)

 = A’C+A’D+BCC+BCD

 = A’C+A’D+BC+BCD

 = A’C+A’D+BC

Hint 1: Use i (X+Y)(X+Z)=X+YZ

Hint 2: Multiply

Question1: How to convert SOP to sum of minterms?

Question2: How to convert POS to product of maxterms?

Implementation of SOP

Any SOP expression can be

implemented using a

 2-levels of gates

The 1st level consists of AND

gates, and the 2nd level

consists of a single OR

gate

Also called 2-level Circuit

Implementation of POS

Any POS expression can be

implemented using a

 2-levels of gates

The 1st level consists of OR

gates, and the 2nd level

consists of a single AND

gate

Also called 2-level Circuit

Simplification

• Simplification using Algebra

• Simplification using Karnaugh Maps (K-Maps)

Simplification using Algebra

F = X’YZ + X’YZ’ + XZ

 = X’Y(Z+Z’) + XZ

 = X’Y.1 + XZ

 = X’Y + XZ

• Simplification may

 mean different things

• here it means less

 number of literals

Simplification Revisited

• Algebraic methods for minimization is limited:
• No formal steps, need experience.

• No guarantee that a minimum is reached

• Easy to make mistakes

• Karnaugh maps (k-maps) is an alternative convenient way for
minimization:
• A graphical technique

• Introduced by Maurice Karnaugh in 1953

• K-maps for up to 4 variables are straightforward to build

• Building higher order K-maps (5 or 6 variable) are a bit more
cumbersome

• Simplified expression produced by K-maps are in SOP or POS
forms

Gray Code &

Truth Table Adjacencies

A B F

0 0 1

0 1 1

1 0 0

1 1 0

These minterms are adjacent in a gray code

sense – they differ by only one bit.

We can apply :

F = A’B’ + A’B = A’(B’+B) = A’ (1)

 = A’

A B F

0 0 0

0 1 1

1 0 0

1 1 1

Same idea:

F = A’B + AB = B

Keep common literal only!

•Remember that Only one bit changes with each number increment in gray codes

• When we group adjacent minterms (gray codes),

we Keep common literal only!

K-Map

A B F

0 0 0

0 1 1

1 0 0

1 1 1

A different way to draw a truth table !

Take advantage of adjacency and gray codes

 B

 A

 0

 1

 0 0

 A’ B’

 1

 A’ B

 1 0

 A B’

 1

 A B

B

A

F = A’B + AB = B

Keep common literal only!

Minimization (Simplification) with K-maps

1. Draw a K-map

2. Combine maximum number of 1’s following rules:

1. Only adjacent squares can be combined

2. All 1’s must be covered

3. Covering rectangles must be of size 1,2,4,8, … 2n

3. Check if all covering are really needed

4. Read off the SOP expression

2-variable K-map

 Given a function with 2 variables: F(X,Y), the total number

of minterms are equal to 4:

 m0, m1, m2, m3

 The size of the k-map is always equal to the total number

of minterms.

X

Y

0

1

0 1

m0 m1

m2 m3

• Each entry of the k-map

corresponds to one minterm

for the function:

• Row 0 represents: X’Y’, X’Y

• Row 1 represents: XY’, XY’

X
Y

0

1

0 1

 0 1

 2 3

Example 1

For a given function F(X,Y) with the following truth table,

minimize it using k-maps

X Y F

0 0 0

0 1 0

1 0 1

1 1 1

X

0

1

0 1

0 0

1 1

Combining all the 1’s

in only the adjacent

squares

The final reduced expression is given by the common

literals from the combination:

Y

 Therefore, since for the combination, Y has different values (0, 1), and X has

a fixed value of 1,

The reduced function is: F(X,Y) = X

Example 2

Q. Simplify the function F(X,Y) = ∑m(1,2,3)

Sol. This function has 2 variables, and three 1-squares

(three minterms where function is 1)

 F = m1 + m2 + m3 X

0

1

0 1

0 1

1 1

Y

X is the common

literal

Y is the common literal

in the adjacent 1-

squares

Minimized expression: F = X + Y

Note: The 1-squares

can be combined more

than once

2 variable K-Maps (Adjacency)

In an n-variable k-map, each square is adjacent to exactly n

other squares

Q: What if you have 1 in all squares?

The boolean function does not depend on the variable , so it is a fixed logic 1

3-variable K-maps

 For 3-variable functions, the k-maps are larger and look different.

 Total number of minterms that need to be accommodated in the k-

map = 8

A

BC

0

1

00 01 11 10

To maintain adjacency neighbors

don’t have more than 1 different bit

m0 m1 m3 m2

m4 m5 m7 m6

B

C

A

3-variable K-maps

A
BC

0

1

00 01 11 10

m0 m1 m3 m2

m4 m5 m7 m6

A
BC

0

1

00 01 11 10

m0 m1 m3 m2

m4 m5 m7 m6

 Minterms mo, m2, m4, m6 can be combined as m0 and m2 are adjacent to each

other, m4 and m6 are adjacent to each other

 mo and m4 are also adjacent to each other, m2 and m6 are also adjacent to each

other

Note: You can only combine a

power of 2 adjacent 1-squares.

For e.g. 2, 4, 8, 16 squares. You

cannot combine 3, 7 or 5

squares

Example 1

Simplify F = ∑m(1, 3, 4, 6) using K-map

B

C

A

 BC

A

00

01

11

10

 0

 0 1

 1
 3

 1
 2

 1

 4

 1
 5

 7 6

 1

Example 1

Simplify F = ∑m(1, 3, 4, 6) using K-map

B

C

A

 BC

A

00

01

11

10

 0

 0 1

 1
 3

 1
 2

 1

 4

 1
 5

 7 6

 1

F = A’C + AC’

Example 2

Simplify F = ∑m(0,1, 2, 4, 6) using K-map

B

C

A

 BC

A

00

01

11

10

 0

 0

 1
 1

 1
 3

 2

 1

 1

 4

 1
 5

 7 6

 1

Example 2

Simplify F = ∑m(0,1, 2, 4, 6) using K-map

B

C

A

 BC

A

00

01

11

10

 0

 0

 1
 1

 1
 3

 2

 1

 1

 4

 1
 5

 7 6

 1

F = A’ B’ + C’

3 variable K-Maps (Adjacency)

Ahmad Almulhem, KFUPM 2010

00 01 11 10

0

1

A 3-variable map has 12 possible groups of 2 minterms

They become product terms with 2 literals

00 01 11 10

0

1

00 01 11 10

0

1

3 variable K-Maps (Adjacency)

Ahmad Almulhem, KFUPM 2010

00 01 11 10

0

1

A 3-variable map has 6 possible groups of 4 minterms

They become product terms with 1 literals

00 01 11 10

0

1

00 01 11 10

0

1

4-variable K-maps

A 4-variable function will consist of 16 minterms and therefore a size 16 k-map is
needed

Each square is adjacent to 4 other squares
A square by itself will represent a minterm with 4 literals
Combining 2 squares will generate a 3-literal output
Combining 4 squares will generate a 2-literal output
Combining 8 squares will generate a 1-literal output

AB
CD

00

01

11

10

00 01 11 10

m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

C

D

A

B

4-variable K-maps (Adjacency)

AB
CD

00

01

11

10

00 01 11 10

m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

 Right column and left column are adjacent; can be combined

 Top row and bottom column are adjacent; can be combined

 Many possible 2, 4, 8 groupings

Note: You can only combine a

power of 2 adjacent 1-squares.

For e.g. 2, 4, 8, 16 squares. You

cannot combine 3, 7 or 5

squares

Example

Minimize the function F(A,B,C,D)=∑m(1,3,5,6,7,8,9,11,14,15)

AB
CD

00

01

11

10

F = CD + A’D + BC + AB’C’

C

D

A

B

00 01 11 10

1 1

1 1 1

1 1

1 1 1

Example

F(A,B,C,D) = Sm(0,1,2,5,8,9,10)

 CD
AB

00 01 11 10

00 1 1 1

01 1

11

10 1 1 1
A=1

C=1

D=1

B=1

Ahmad Almulhem, KFUPM 2010

Example

F(A,B,C,D) = Sm(0,1,2,5,8,9,10)

Solution:

F = B’ D’ + B’ C’ + A’ C’ D

 CD
AB

00 01 11 10

00 1 1 1

01 1

11

10 1 1 1
A=1

C=1

D=1

B=1

Using (POS)

F(A,B,C,D) = Sm(0,1,2,5,8,9,10)

Write F in the simplified product of sums (POS) not (SOP)

Two methods?

You already know one!

 CD
AB

00 01 11 10

00 1 1 1

01 1

11

10 1 1 1
A=1

C=1

D=1

B=1

Using (POS)

F(A,B,C,D) = Sm(0,1,2,5,8,9,10)

Write F in the simplified product of sums (POS) not (SOP)

 CD
AB

00 01 11 10

00 1 1 1

01 1

11

10 1 1 1
A=1

C=1

D=1

B=1

 F’ = AB + CD + BD’

 Therefore,

 F’’ = F = (A’+B’)(C’+D’)(B’+D)

 Follow same rule as before but for the
ZEROs

Don’t Cares

• In some cases, the output of the function (1 or 0) is not
specified for certain input combinations either because

• The input combination never occurs (Example BCD codes), or

• We don’t care about the output of this particular combination

• Such functions are called incompletely specified functions

• Unspecified minterms for these functions are called don’t
cares

• While minimizing a k-map with don’t care minterms, their
values can be selected to be either (1 or 0) depending on
what is needed for achieving a minimized output.

 BC

A

00

01

11

10

 0

 0

 X
 1

 1
 3

 1
 2

 1

 4

 5

 X
 7

 1
 6

Example

F = ∑m(1, 3, 7) + ∑d(0, 5)

B

C

A

Circle the x’s that help get bigger

groups of 1’s (or 0’s if POS).

Don’t circle the x’s that don’t help.

F = C

Example 2

F(A, B, C, D) = ∑ m(1, 3, 7, 11, 15) + ∑ d(0, 2, 5)

Src: Mano’s Textbook

-Two possible solutions!

-Both acceptable.

-All 1’s covered

5-variable K-maps

BC
DE

00

01

11

10

00 01 11 10

m0 m1 m3 m2

m4 m5 m7 m6

m12 m13 m15 m14

m8 m9 m11 m10

m16 m17 m19 m18

m20 m21 m23 m22

m28 m29 m31 m30

m24 m25 m27 m26

A=0 A=1

00 01 11 10

• 32 minterms require 32 squares in the k-map

• Minterms 0-15 belong to the squares with variable A=0, and minterms 16-32

belong to the squares with variable A=1

• Each square in A’ is also adjacent to a square in A (one is above the other)

• Minterm 4 is adjacent to 20, and minterm 15 is to 31

Ahmad Almulhem, KFUPM 2010

Definitions

• An implicant is a product term of a function

• Any group of 1’s in a K-Map

• A prime implicant is a product term obtained by
combining the maximum possible number of adjacent 1’s
in a k-map

• Biggest groups of 1’s

• Not all prime implicants are needed!

• If a minterm is covered by exactly one prime implicant
then this prime implicant is called an essential prime
implicant

Finding the minimum SOP

Example

Consider F(X,Y,Z) = Sm(1,3,4,5,6)

List all implicants, prime implicants and

essential prime implicants

Solution:

Implicants: XY’Z’, XZ’, XY’, XY’Z, X’Y’Z,

Y’Z, ………

Prime Implicants: XY’, XZ’, Y’Z, X’Z

EPIs: X’Z, XZ’

 YZ
X 00 01 11 10

0 1 1

1 1 1 1

Y=1

Z=1

X=1

 YZ
X 00 01 11 10

0 1 1

1 1 1 1

Y=1

Z=1

X=1
The simplest expression is NOT unique!

Finding minimum SOP

1. Find each essential prime implicant and

include it in the solution

2. If any minterms are not yet covered,

find minimum number of prime

implicants to cover them (minimize

overlap).

Example 2

Simplify F(A, B, C, D) = ∑ m(0, 1, 2, 4,

5, 10,11,13, 15)

Note:

-Only A’C’ is E.P.I

-For the remaining minterms:

-Choose 1 and 2 (minimize overlap)

-For m2, choose either A’B’D’ or B’CD’

F = A’C’ + ABD + AB’C + A’B’D’

Src: Mano’s Textbook

NAND Gate is Universal

•Therefore, we can build all functions we learned so far using NAND
gates ONLY (Exercise: Prove that NOT can be built with NAND)

•NAND is a UNIVERSAL gate

NOT X X’ X’

AND
X

Y
XY

X

Y

XY

OR
X

Y
X+Y

X

Y

X+Y

X

X

Graphic Symbols for NAND Gate

Two equivalent

graphic symbols

or shapes for

the SAME

function

(XYZ)’ AND-NOT

X
Y

Z

X’+Y’+Z’ = (XYZ)’ NOT-OR
X

Y

Z

AND-NOT = NOT-OR

Implementation using NANDs

Example: Consider F = AB + CD

F
B

A

D

C

F
B

A

D

C

NAND

NAND

F B

A

D

C

Proof:

 F = F’’= ((AB)’.(CD)’)’

 = ((AB)’)’ + ((CD)’)’

 = AB + CD

Implementation using NANDs

Consider F =Σm(1,2,3,4,5,7) – Implement using
NAND gates

 YZ
X 00 01 11 10

0 1 1 1

1 1 1 1

Y=1

Z=1

X=1

F(X,Y) = Z+XY’+X’Y

F
Y’

X

Y

X’

Z

F
Y’

X

Y

X’

Z’

Rules for 2-Level NAND

Implementations

1. Simplify the function and express it in sum-of-

products form

2. Draw a NAND gate for each product term (with 2

literals or more)

3. Draw a single NAND gate at the 2nd level (in place of

the OR gate)

4. A term with single literal requires a NOT

NOR Gate is Universal

•Therefore, we can build all functions we learned so far using NOR
gates ONLY (Exercise: Prove that NOT can be built with NOR)

•NOR is a UNIVERSAL gate

NOT X X’

AND
X

Y
XY

OR
X

Y
X+Y

X’

X

Y

(X+Y)’’ = X+Y

X

Y

(X’+Y’)’ = XY

X

X

Graphic Symbols for NOR Gate

Two equivalent

graphic symbols

or shapes for the

SAME function
(X’Y’Z’)=(X+Y+Z)’

NOT-AND

X
Y

Z

(X+Y+Z)’

OR-NOT

X

Y

Z

OR-NOT = NOT-AND

Implementation using NOR

gates

Consider F = (A+B)(C+D)E

F
B

A

D

C

E

F
B

A

D

C

E’

NOR

NOR

Implementation using NOR

gates

Consider F =Σm(1,2,3,5,7) – Implement using NOR
gates

 YZ
X 00 01 11 10

0 1 1 1

1 1 1

Y=1

Z=1

X=1

F’(X,Y) = Y’Z’+XZ’, or
F(X,Y) = (Y+Z)(X’+Z)

F Z

X’

Z

Y

F Z

X’

Z

Y

Rules for 2-Level NOR

Implementations

1. Simplify the function and express it in product of

sums form

2. Draw a NOR gate (using OR-NOT symbol) for each

sum term (with 2 literals or more)

3. Draw a single NOR gate (using NOT-AND symbol)

the 2nd level (in place of the AND gate)

4. A term with single literal requires a NOT

