
Digital Logic Design

Combinational Logic

(Karnuph Maps)
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Simplification

• Simplification using Algebra

• Simplification using Karnaugh Maps (K-Maps)

2



Simplification using Algebra

F = X’YZ + X’YZ’ + XZ

= X’Y(Z+Z’) + XZ     

= X’Y.1 + XZ            

= X’Y + XZ               

• Simplification may  

mean different things

• here it means less   

number of literals

3



Simplification Revisited

• Algebraic methods for minimization is limited: 
• No formal steps, need experience.

• No guarantee that a minimum is reached

• Easy to make mistakes

• Karnaugh maps (k-maps) is an alternative convenient way for 
minimization:
• A graphical technique

• Introduced by Maurice Karnaugh in 1953

• K-maps for up to 4 variables are straightforward to build

• Building higher order K-maps (5 or 6 variable) are a bit more 
cumbersome

• Simplified expression produced by K-maps are in SOP or POS 
forms
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Gray Code &

Truth Table Adjacencies

A B F

0 0 1

0 1 1

1 0 0

1 1 0

These minterms are adjacent in a gray code 

sense – they differ by only one bit.

We can apply :

F = A’B’ + A’B = A’(B’+B) = A’ (1)

= A’

A B F

0 0 0

0 1 1

1 0 0

1 1 1

Same  idea:

F = A’B + AB = B

Keep common literal only!

•Remember that Only one bit changes with each number increment in gray codes

• When we group adjacent minterms (gray codes), 

we Keep common literal only!

5



K-Map

A B F

0 0 0

0 1 1

1 0 0

1 1 1

A different way to draw a truth table !

Take advantage of adjacency and gray codes

B    

A 0 1

0 0

A’ B’

1   

A’ B

1 0

A B’

1

A B

B

A

F = A’B + AB = B

Keep common literal only!
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Minimization (Simplification) with K-maps

1. Draw a K-map

2. Combine  maximum number of 1’s following rules:

1. Only adjacent squares can be combined

2. All  1’s must be covered

3. Covering rectangles must be of size 1,2,4,8, … 2n

3. Check if all covering are really needed

4. Read off the SOP expression
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2-variable K-map

 Given a function with 2 variables: F(X,Y), the total number 

of minterms are equal to 4:

m0, m1, m2, m3

 The size of the k-map is always equal to the total number 

of minterms. 
X

Y

0

1

0       1

m0 m1

m2 m3

• Each entry of the k-map 

corresponds to one minterm

for the function:

• Row 0 represents: X’Y’, X’Y

• Row 1 represents: XY’, XY’

X
Y

0

1

0       1

0 1

2 3
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Example 1

For a given function F(X,Y) with the following truth table, 

minimize it using k-maps

X Y F

0 0 0

0 1 0

1 0 1

1 1 1

X

0

1

0       1

0        0

1        1

Combining all the 1’s 

in only the adjacent 

squares

The final reduced expression is given by the common 

literals from the combination: 

Y

 Therefore, since for the combination, Y has different values (0, 1), and X has 

a fixed value of 1, 

The reduced function is: F(X,Y) = X
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Example 2

Q. Simplify the function F(X,Y) = ∑m(1,2,3)

Sol. This function has 2 variables, and three 1-squares 

(three minterms where function is 1)

F = m1 + m2 + m3 X

0

1

0       1

0        1

1        1

Y

X is the common 

literal

Y is the common literal 

in the adjacent 1-

squares

Minimized expression: F = X + Y

Note: The 1-squares 

can be combined more 

than once
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2 variable K-Maps (Adjacency)

In an n-variable k-map, each square is adjacent to exactly n
other squares

Q: What if you have 1 in all squares? 

The boolean function does not depend on the variable , so  it is a fixed logic 1
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3-variable K-maps

 For 3-variable functions, the k-maps are larger and look different. 

 Total number of minterms that need to be accommodated in the k-

map = 8

A

BC

0

1

00        01       11       10

To maintain adjacency neighbors 

don’t have more than 1 different bit

m0 m1 m3 m2

m4 m5 m7 m6

B

C

A
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3-variable K-maps

A
BC

0

1

00         01           11         10

m0 m1 m3 m2

m4 m5 m7 m6

A
BC

0

1

00         01           11         10

m0 m1 m3 m2

m4 m5 m7 m6

 Minterms mo, m2, m4, m6 can be combined as m0 and m2 are adjacent to each 

other, m4 and m6 are adjacent to each other

 mo and m4 are also adjacent to each other, m2 and m6 are also adjacent to each 

other

Note: You can only combine a 

power of 2 adjacent 1-squares. 

For e.g. 2, 4, 8, 16 squares. You 

cannot combine 3, 7 or 5 

squares
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Example 1

Simplify F = ∑m(1, 3, 4, 6) using K-map

B

C

A

BC   

A 00 01 11 10

0

0 1

1
3

1
2

1

4

1
5 7 6

1
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Example 1

Simplify F = ∑m(1, 3, 4, 6) using K-map

B

C

A

BC    

A 00 01 11 10

0

0 1

1
3

1
2

1

4

1
5 7 6

1

F = A’C + AC’
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Example 2

Simplify F = ∑m(0,1, 2, 4, 6) using K-map

B

C

A

BC    

A 00 01 11 10

0

0

1
1

1
3 2

1

1

4

1
5 7 6

1
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Example 2

Simplify F = ∑m(0,1, 2, 4, 6) using K-map

B

C

A

BC    

A 00 01 11 10

0

0

1
1

1
3 2

1

1

4

1
5 7 6

1

F = A’ B’ + C’
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3 variable K-Maps (Adjacency)

00 01 11 10

0

1

A 3-variable  map has 12 possible groups of 2 minterms 

They become product terms with 2 literals

00 01 11 10

0

1

00 01 11 10

0

1
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3 variable K-Maps (Adjacency)

00 01 11 10

0

1

A 3-variable  map has 6 possible groups of 4 minterms 

They become product terms with 1 literals

00 01 11 10

0

1

00 01 11 10

0

1
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4-variable K-maps

A 4-variable function will consist of 16 minterms and therefore a size 16 k-map is 
needed

Each square is adjacent to 4 other squares
A square by itself will represent a minterm with 4 literals

Combining 2 squares will generate a 3-literal output
Combining 4 squares will generate a 2-literal output
Combining 8 squares will generate a 1-literal output

AB
CD

00

01

11

10

00       01       11        10

m0 m1 m3 m2

m4 m5 m7 m6

m12 m13        m15 m14

m8 m9 m11 m10

C

D

A

B
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4-variable K-maps (Adjacency)

AB
CD

00

01

11

10

00         01           11         10

m0 m1 m3 m2

m4 m5 m7 m6

m12 m13        m15 m14

m8 m9 m11 m10

 Right column and left column are adjacent; can be combined

 Top row and bottom column are adjacent; can be combined

 Many possible  2, 4, 8 groupings

Note: You can only combine a 

power of 2 adjacent 1-squares. 

For e.g. 2, 4, 8, 16 squares. You 

cannot combine 3, 7 or 5 

squares

21



Example

Minimize the function F(A,B,C,D)=∑m(1,3,5,6,7,8,9,11,14,15)

AB
CD

00

01

11

10

F = CD + A’D + BC + AB’C’

C

D

A

B

00       01       11        10

1 1

1 1 1

11

111
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Example

F(A,B,C,D) = Sm(0,1,2,5,8,9,10)

CD 
AB

00 01 11 10

00 1 1 1

01 1

11

10 1 1 1
A=1

C=1

D=1

B=1
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Example

F(A,B,C,D) = Sm(0,1,2,5,8,9,10)

Solution: 

F = B’ D’ + B’ C’ + A’ C’ D
CD 

AB
00 01 11 10

00 1 1 1

01 1

11

10 1 1 1
A=1

C=1

D=1

B=1
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Using (POS)

F(A,B,C,D) = Sm(0,1,2,5,8,9,10)

Write F in the simplified product of sums (POS) not (SOP)

Two methods?

You already know one!
CD 

AB
00 01 11 10

00 1 1 1

01 1

11

10 1 1 1
A=1

C=1

D=1

B=1
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Using (POS)

F(A,B,C,D) = Sm(0,1,2,5,8,9,10)

Write F in the simplified product of sums (POS) not (SOP)

CD 
AB

00 01 11 10

00 1 1 1

01 1

11

10 1 1 1
A=1

C=1

D=1

B=1

F’ = AB + CD + BD’

 Therefore, 

F’’ = F = (A’+B’)(C’+D’)(B’+D)

 Follow same rule as before but for the 
ZEROs
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Don’t Cares

• In some cases, the output of the function (1 or 0) is not 
specified for certain input combinations either because

• The input combination never occurs (Example BCD codes), or

• We don’t care about the output of this particular combination

• Such functions are called incompletely specified functions

• Unspecified minterms for these functions are called don’t 
cares

• While minimizing a k-map with don’t care minterms, their 
values can be selected to be either (1 or 0) depending on 
what is needed for achieving a minimized output.
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BC    

A 00 01 11 10

0

0

X
1

1
3

1
2

1

4 5

X
7

1
6

Example

F = ∑m(1, 3, 7) + ∑d(0, 5) 

B

C

A

Circle the x’s that help get bigger 

groups of 1’s (or 0’s if POS).

Don’t circle the x’s that don’t help.

F = C
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Example 2

F(A, B, C, D) = ∑ m(1, 3, 7, 11, 15) + ∑ d(0, 2, 5)

Src: Mano’s Textbook

-Two possible solutions!

-Both acceptable.

-All 1’s covered
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5-variable K-maps

BC
DE

00

01

11

10

00         01           11         10

m0 m1 m3 m2

m4 m5 m7 m6

m12 m13         m15 m14

m8 m9 m11 m10

m16 m17              m19 m18

m20 m21              m23 m22

m28 m29        m31 m30

m24 m25            m27 m26

A=0 A=1

00         01           11         10

• 32 minterms require 32 squares in the k-map

• Minterms 0-15 belong to the squares with variable A=0, and minterms 16-32 

belong to the squares with variable A=1

• Each square in A’ is also adjacent to a square in A (one is above the other)

• Minterm 4 is adjacent to 20, and minterm 15 is to 31
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NAND Gate is Universal

•Therefore, we can build all functions we learned so far using NAND 
gates ONLY (Exercise: Prove that NOT can be built with NAND)

•NAND is a UNIVERSAL gate

NOT X X’ X’

AND
X

Y
XY

X

Y

XY

OR
X

Y
X+Y

X

Y

X+Y

X

X
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Rules for 2-Level NAND 

Implementations

1. Simplify the function and express it in sum-of-

products form

2. Draw a NAND gate for each product term (with 2 

literals or more)

3. Draw a single NAND gate at the 2nd level (in place of 

the OR gate)

4. A term with single literal requires a NOT
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Implementation using NANDs

Example: Consider F = AB + CD

F
B

A

D

C

FB

A

D

C

Proof: 

F = F’’= ((AB)’.(CD)’)’

= ((AB)’)’ + ((CD)’)’

= AB + CD
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Implementation using NANDs

Consider F =Σm(1,2,3,4,5,7) – Implement using 
NAND gates 

YZ 
X  00 01 11 10

0 1 1 1

1 1 1 1

Y=1

Z=1

X=1

F(X,Y) = Z+XY’+X’Y

F
Y’

X

Y

X’

Z’
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NOR Gate is Universal

•Therefore, we can build all functions we learned so far using NOR 
gates ONLY (Exercise: Prove that NOT can be built with NOR)

•NOR is a UNIVERSAL gate

NOT X X’

AND
X

Y
XY

OR
X

Y
X+Y

X’

X

Y

(X+Y)’’ = X+Y

X

Y

(X’+Y’)’ = XY

X

X
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Rules for 2-Level NOR 

Implementations

1. Simplify the function and express it in product of 

sums form

2. Draw a NOR gate (using OR-NOT symbol) for each 

sum term (with 2 literals or more)

3. Draw a single NOR gate (using NOT-AND symbol) 

the 2nd level (in place of the AND gate)

4. A term with single literal requires a NOT
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Implementation using NOR gates

Consider F = (A+B)(C+D)E

F
B

A

D

C

E

F
B

A

D

C

E’

NOR

NOR
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Implementation using NOR 

gates

Consider F =Σm(1,2,3,5,7) – Implement using NOR 
gates 

YZ 
X  00 01 11 10

0 1 1 1

1 1 1

Y=1

Z=1

X=1

F’(X,Y) = Y’Z’+XZ’, or
F(X,Y) = (Y+Z)(X’+Z)

FZ

X’

Z

Y

FZ

X’

Z

Y
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Combinational Circuits

• Two classes of logic circuits:

• Combinational Circuits

• Sequential Circuits

• A Combinational circuit consists of logic gates

• Output depends only on input

• A Sequential circuit consists of logic gates and 
memory

• Output depends on current inputs and previous ones 
(stored in memory)

• Memory defines the state of the circuit.



Combinational Circuits

 A combinational circuit has:
• n Boolean inputs (1 or more),

• m Boolean outputs (1 or more)

• logic gates mapping the inputs to the outputs

Combinational

Circuits
n inputs m outputs

 How to design a combinational circuit?

• Use all the information and tools you learned

• Binary system, Boolean Algebra, K-Maps, etc.

• Follow the step-by-step procedure given next



Design Procedure

1. Specification
• Write a specification for the circuit if one is not 

already available

• Specify/Label input and output

2. Formulation
• Derive a truth table or initial Boolean equations that 

define the required relationships between the inputs 
and outputs, if not in the specification

3. Optimization
• Apply 2-level and multiple-level optimization 

(Boolean Algebra, K-Map, software)

• Draw a logic diagram for the resulting circuit using 
ANDs, ORs, and inverters



Design Procedure (Cont.)

4. Technology Mapping

• Map the logic diagram to the implementation technology 

selected (e.g. map into NANDs or NORs)

5. Verification

• Verify the correctness of the final design manually or 

using simulation 

Practical Considerations:

• Cost of gates (Number)

• Maximum allowed delay

• Fanin/Fanout



Example 1 (cont.)

Question: Design a circuit that has a 3-bit input 
and a single output (F) specified as follows: 
• F = 0, when the input is less than (5)10

• F = 1, otherwise

Solution: 

Step 1 (Specification): 

• Label the inputs (3 bits) as X, Y, Z
• X is the most significant bit, Z is the least significant bit

• The output (1 bit) is F:
• F = 1  (101)2, (110)2, (111)2

• F = 0  other inputs



Step 2 (Formulation)

Obtain Truth table

X Y Z F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

X
YZ

0

1

00         01           11         10

0         0            0          0

0         1  1          1

Step 3 (Optimization)

F = XZ + XY

X

Z

X

Y

F

Circuit Diagram

Example 1 (cont.)

SOP can be implemented using all NAND circuit



Example 2

• A seven-segment display is digital readout found in electronic 
devices like clocks, TVs, etc.

• Made of seven light-emitting diodes (LED) segments; each segment is 
controlled separately. 

• A BCD-to-Seven-Segment decoder is a combinational circuit

• Accepts a decimal digit in BCD (input)

• Generates appropriate outputs for the segments to display the input 
decimal digit (output)

Question (BCD-to-Seven-Segment Decoder)

src: Mano’s book



Example 2 (cont.)

Step 1 (Specification):

• 4 inputs (A, B, C, D)

• 7 outputs (a, b, c, d, e, f, g)

BCD-to-Seven-

Segment

Decoder

A B C D

a   b  c   d  e   f   g 



BCD Input 7 Segment Decoder

Decimal A B C D a b c d e f g

0 0 0 0 0 1 1 1 1 1 1 0

1 0 0 0 1 0 1 1 0 0 0 0

2 0 0 1 0 1 1 0 1 1 0 1

3 0 0 1 1 1 1 1 1 0 0 1

4 0 1 0 0 0 1 1 0 0 1 1

5 0 1 0 1 1 0 1 1 0 1 1

6 0 1 1 0 1 0 1 1 1 1 1

7 0 1 1 1 1 1 1 0 0 0 0

8 1 0 0 0 1 1 1 1 1 1 1

9 1 0 0 1 1 1 1 0 0 1 1

10-15 All Other Inputs 0 0 0 0 0 0 0

Example 2 (cont.)

Step 2 (Formulation)

Invalid 

BCD 

codes

=

No Light



Example 2 (cont.)

a b c d

e f g

Step 3 (Optimization)



a = A’C + A’BD + AB’C’ + B’C’D’

b = A’B’ + A’C’D’ + A’CD + B’C’

c = A’B + B’C’ + A’C’ + A’D

d = A’CD’ + A’B’C + B’C’D’+AB’C’+A’BC’D

e = A’CD’ + B’C’D’

f = A’BC’ + A’C’D’ + A’BD’ + AB’C’

g = A’CD’ + A’B’C + A’BC’ + AB’C’

Example 2 (cont.)

Exercise: Draw the circuit

Step 3 (Optimization) (cont.)


