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CHAPTER 12 FREQUENCY RESPONSE ANALYSIS (BODE PLOTS)

After completing this chapter, the students will be able to:

Plot asymptotic approximations to the frequency response of an open-loop
control system,
Use the Bode plot to determine the stability of open-loop systems
Find the bandwidth, peak magnitude, and peak frequency of a closed-loop
frequency response.
1. Introduction
Frequency response methods, developed by Nyquist (1930) and Bode (1945), are older
than the root locus method, which was discovered by Evans in 1948.
Obtaining the frequency response from the transfer function by substituting the value
of (w) directly in the system transfer function is a tedious task. The frequency range
required in frequency response is often so wide that it is inconvenient to use a linear
scale for the frequency axis. Also, there is a more systematic way of locating the
important features of the magnitude and phase plots of the transfer function. For these

reasons, it has become standard practice to use a logarithmic scale for the frequency
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axis and a linear scale in each of the separate plots of magnitude and phase. Such
semi-logarithmic plots of the transfer function—known as Bode plots—have become
the industry standard. Bode plots contain the same information as the non-logarithmic
plots, but they are much easier to construct.
The transfer function GH(s) can be expressed as:
GH(s) = |GH|4¢
Since Bode plots are based on logarithms, it is important that we keep the following
properties of logarithms in mind:
log X, X, =log X; +log X,
log X, /X, =logX; —log X,
log X,% =2log X,
log1 =0
2. The Decibel Scale
In communications systems, gain is measured in Bels. The bel is used to measure the

ratio of two levels of power or power gain G; that is,

P
G = logP—1 Bels
2

Deci is a suffix express 10 times of the quantity.

P
G=10x logP—1 deciBels
2

deciBels or (dB) provides less magnitude. Decibels is 1/10 of bels.

Consider the electric network shown in Fig. 1.

Network

Fig. 1, Simple electric circuit
If Py is the input power, P: is the output (load) power, Ry is the input resistance, and R

Is the load resistance, then:
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Assuming that R1 = R» a condition that is often assumed when comparing voltage

levels, then:

2

Gap = 10 x log ot = 10 x | (Vl) =20 x1 (Vl>
By the same way, assuming that R:1 = R. a condition that is assumed for comparing

current levels, then:

2

Py I I
Gag = 10 X logP— = 10 X log (1—> = 20 X log (1—)
2 2 2

To conclude the above information:

e 10 log is used for power, while 20 log is used for voltage or current, because of
the square relationship.

e The dB value is a logarithmic measurement of the ratio of one variable to
another of the same type. Therefore, it applies in expressing the transfer
function.

In Bode plots, the magnitude is plotted in Decibels (dB) versus frequency. The dB
quantity can be obtained as:

GH, ;s = 20log GH
Moreover, the phase angle (¢) is plotted versus frequency. Both magnitude and phase

plots are made on semi-log graph paper.

3. Asymptotic Bode Plots (Open-Loop Frequency Response)

The log-magnitude and phase frequency response curves as functions of log o are
called Bode plots or Bode diagrams. Sketching Bode plots can be simplified because
they can be approximated as a sequence of straight lines. Straight-line approximations
simplify the evaluation of the magnitude and phase frequency response.

Consider the following transfer function that may be written in terms of factors that

have real and imaginary parts such as:
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this is called the Bode (Standard) form of the system transfer function that may

G(jw) =

contain seven different factors:
e Bode gain K

e Pole at origin (jw) ™! or zero at origin (jw)*!

. -1 .
e Real pole (1 + ;—(‘1’) and/or real zero (1 + %)

w

2 -1 2
e Quadratic pole {1 +j2¢, wﬂ + (wi) } or quadratic zero {1 +j2¢, wﬂ + ( ) }

Wn
In constructing a Bode plot, we plot each factor separately and then combine them
graphically. The factors can be considered one at a time and then combined additively
because of the logarithms involved. For this mathematical convenience of the
logarithm, Bode plots is considered as a powerful engineering tool.
In the following subsections, we will make straight-line plots of the factors listed

above. These straight-line plots known as asymptotic (approximate) Bode plots.

3.1 Bode Gain

For the gain K, there are two cases:

K is +ve and less than one: the magnitude 20 log K is negative and the phase is 0°;

K is +ve and greater than one: the magnitude 20 log K is positive and the phase is O¢;
K is -ve and less than one: the magnitude 20 log K is negative and the phase is -180°;
K is -ve and greater than one: the magnitude 20 log K is +ve and the phase is -180°;

Both of the magnitude and phase are constant with frequency. Thus the magnitude and

phase plots of the gain are shown in Fig.2.
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Fig. 2, Magnitude and phase plots of Bode gain

3.2 Zero at origin

For the zero (jw) at the origin, the magnitude is 20 logio w and the phase is 90-. These
are plotted in Fig. 3, where we notice that the magnitude is represented by a straight
line with slope of 20 dB/decade and intersect the 0dB line at =1 and extended to
intersect the vertical axis. But the phase is represented by straight line parallel to
horizontal axis with constant value at 90°.

sdaig @ = | e Jund jall by jay g A0 JS1 Ja 20 4lie asiise Jady Jias 4l
® Jsaal 5 se afine Jady Jiai 5 da 50 90 die A4 Lgiagid 4y ) 31 Ll

b A
90°

OC | 1
Slope = 20 dB/decade 0.1 1.0

Fig. 3, Magnitude and phase plots of zero at origin
In general, for multiple zeros at origin (jw)N, where N is an integer, the magnitude plot
will have a slope of (20xN) dB/decade. But the phase is (90xN) degrees.
3.3 Pole at origin
For the pole (jw)? at the origin, the magnitude is -20 logio @ and the phase is -90-.
These are plotted in Fig. 4, where we notice that the magnitude is represented by a
straight line with slope of -20 dB/decade and intersect the 0dB line at ®w=1 and
extended to intersect the vertical axis. But the phase is represented by straight line
parallel to horizontal axis with constant value at -90°.
sdaig ) = | e Jamad yiall bty ja 5 2S00 JSI Jonnd 220 4lie asiise Jady Jiad dagdll
® snal (5 ) 5 aiivne Jady Jiai g da 40 290 ie A4 Lgiagid 45l 311 Ll
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In general, for multiple poles at origin (jw)-N, where N is an integer, the magnitude

plot will have a slope of - (20xN) dB/decade. But the phase is - (90xN) degrees.

i_

Slope = —20 dB/decade ¢ 4
OC

. L

1.0 10

o —90°

Fig. 4, Magnitude and phase plots of pole at origin
3.4 Real Zero

The magnitude of a real zero (1 + %) Is obtained from 20 log |1 + %| and the phase
is obtained from tan—?! (;’—1) We notice that:

- For small values of o, the magnitude is 20 log |1 +74 = 20log1 =0

j
z1

- For large values of ®, the magnitude is 20 log/\/+ §| = 20log |ﬁ|

From the above two points, we can approximate the magnitude of real zero by two
straight lines (at ® — 0 : a straight line with zero slope with zero magnitude) and (at ®
— o0 : a straight line with slope 20 dB/decade). At the frequency w = z1 where the two
asymptotic lines meet is called the corner frequency. Thus, the approximate magnitude
plot is shown in Fig. 5. The actual plot for real zero is also shown in that figure. Notice
that the approximate plot is close to the actual plot except at the corner frequency,
where o = z1 and the deviation is 20 log|1 + j1| = 20log+/2 = 3 dB.
s2ai¥ 9 Z1 = @ e Juwwd Hheall bty jan 9 2S00 IS Jond +20 4lie aafioss Jady Jiad dagdl)
e oy Laginy Jaai 5 90 = 450 31 (10Z1) 20 2S00 &3 ¢ ea = 450 31 (Z1/10) Jad 2S00 4 ) 30
A< KA ja 45 badll dae o <4

oy
Approximate
Approxima te

45°/decade i

S1

Fig. 5, Magnitude and phase plots of real zero
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The phase angle of real zero that given as tan™! (;‘)—1) Is represented as a straight-line

approximation, ¢ = 0 for w < z1/10, ¢ = 45°for w = z1, and ¢ = 90° for w > 10z1 as
shown in Fig. 4. The straight line has a slope of 45° per decade.

0, w =20
AC i
¢ = tan — | =1345°, w=7

“1 20°, @ — 00

For example, consider the real zero (S+1), it will be (1+j®) in the Bode form. Then:

w
magnitude = 20log(+/1 + w?), phase = tan‘lT

The following table shows the actual and asymptotic values of the magnitude and

phase of that real zero.

Frequency Magnitude (dB) Phase (degrees)

{rad/s) Asymplotic Actual Asymplotic Actual

0.01 0 0.00 0.00 0.57
0.02 0 0.00 0.00 1.15
0.04 0 0.01 0.00 2.29
0.06 0 0.02 0.00 3.43
0.08 0 0.03 0.00 4.57
0.1 0 0.04 0.00 5.71
0.2 0 0.17 13.55 11.31
0.4 0 0.64 2709 21.80
0.6 0 1.34 3502 300,96
0.8 0 2.15 40.64 38.66
0 300 45.00 45.00
b 6.99 SB.55 63.43
12 1230 72.09 75.96
15.68 80.02 80.54

18 18.13 83.64 82.87
20.04 90.00 84.29

2603 90.00 57.14

3204 90.00 B8.57

3556 90.00 89.05

38.06 90.00 89.28

40.00 90.00 B9.43
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3.5 Real Pole

) jo\71 . . jw
The magnitude of a real pole (1 + E) Is obtained from —20 log |1 + E|’ and the
phase is obtained from —tan™1 (ﬁ) We notice that:

- For small values of @, the magnitude is —20 log |1 +/%| =20logl =0

- For large values of w, the magnitude is —20 logJ/l/+ ;—(‘1)| = —20log |%|

From the above two points, we can approximate the magnitude of real pole by two
straight lines (at @ — 0 : a straight line is with zero slope and zero magnitude) and (at
® — oo : the straight line is with slope -20 dB/decade). At the frequency » = pl where
the two asymptotic lines meet is called the corner frequency. Thus, the approximate
magnitude plot is shown in Fig. 6. The actual plot for real pole is also shown in that
figure. Notice that the approximate plot is close to the actual plot except at w = p1, the
deviation is —20 log|1 + j1| = —20log+2 = —3 dB.
s2a¥ 5 pl = @ die Juen Hiiall bty ey s 2S00 JSI Jasny 220 Alie aise Jady Jia Al

The phase angle of real pole that given as —tan™? (ﬁ) IS represented as a straight-line

approximation, ¢ = 0 for o < p1/10, ¢ = -45-for w = p1, and ¢ = -90- for w > 10pl as
shown in Fig. 6. The straight line has a slope of -45° per decade.
piiine Jady Laginy Jaai 5 90- = 451 311 (10p1) 2 S0 & ¢ tea = 450 3 (p1/10) S8 1S 24,50 30
S IS0 A 50 45 Laall Jue (5S4
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P, _

) —+ 20
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Fig. 6, Magnitude and phase plots of real pole
3.6 Quadratic Zero

The magnitude of a quadratic zero {1 +]2§‘2 — + ( ) } IS obtained as

20log |1 + j2¢&, —Oforw—>0

2010g/\//+]252% (ﬁ)‘—ZOlog( ) —40log|( )fora)—>oo

Thus, the amplitude plot consists of two straight asymptotic lines: one with zero slope
for w < wn and the other one with slope —40 dB/decade for @ > wn, With wn as the
corner frequency. Figure 7 shows the approximate and actual amplitude plots. Note
that the actual plot depends on the damping ratio & as well as the corner frequency wn.
The significant peaking in the neighborhood of the corner frequency should be added
to the straight-line approximation if a high level of accuracy is desired. However, we
will use the straight-line approximation for the sake of simplicity.

The phase plot is a straight line with a slope of 90- per decade starting at wn/10 and
ending at 10wn, as shown in Fig. 7. We see again that the difference between the

actual plot and the straight-line plot is due to the damping factor.

0, w = 0
=13 90°, w=w
; 2 2 - L] n
L—o*/op lis0e, w— oo

¢ =tan~! 2020/0n - _
= ta S S
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Fig. 7, Magnitude and phase plots of quadratic zero

2 _1
For the quadratic pole {1 + j2¢&, wﬂ + ( ) } the plots shown in Fig. 7 are inverted

w
wWn

because the magnitude plot has a slope of -40 dB/decade while the phase plot has a

slope of -90- per decade.

0, ) = O
1 . 2/ 2 —90°, = Wy
VT Wy —180°, w — 00

20w/ w,
Since the asymptotes are quite easy to draw and are sufficiently close to the exact
curve, the use of such approximations in drawing Bode diagrams is convenient in
establishing the general nature of the frequency-response characteristics quickly with a

minimum amount of calculation and may be used for most preliminary design work.

4. Closed-Loop Stability Analysis Using Bode Plots

The gain crossover frequency wg is defined as the frequency at which the total
magnitude equals 0 dB. Therefore, its value can be determined from the intersection of
the total magnitude line with the 0 dB line as shown in Fig. 8. On the other hand, the
phase crossover frequency wp is defined as the frequency at which the total phase
equals —180°. Therefore, its value can be determined from the intersection of the total

phase line with the —180° line as shown in Fig. 8.
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Fig. 8, Gain and Phase crossover frequencies
The system Gain Margin (GM) in dB is the additional gain that makes the system on
the edge of instability. GM can be determined by calculating the total magnitude at
= wp. Also, the system Phase Margin ¢pm in degrees is the additional phase that makes
the system on the edge of instability. ¢rm can be determined by calculating the total
phase at ® = wg as shown in Fig. 9.

1

40 Unstable region for
@),. gain crossover _intersect on magn'l.tu('ic :
curve atr phase crossover:

negative gain maurgin

1

l Gain margin @ (rad/sec)

Stable region for
mrersect on magoitude
curve at phase crossover:
posilive gain margin

Total\lagnitude

Phasc
margin

Unstable region for
intersect on phase curve
at phase crossover;
negative phase margin

Stable region for
intersect on phase curve
at phase crossover,
positive phase margin

WO SR

;
I
4
|
I

/ w (rad/sec)

@),. phase crossover

Fig. 9, Gain and Phase Margins
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5. Plotting Bode Plots Using Matlab

To specify the frequency range for Bode plots, use the command:

>> logspace (dl,d2)

This generate 50 points logarithmically equally spaced between 109 and 10%,

For example, if we need Bode plot starts at 0.1 rad/sec and finish at 100 rad/sec, enter
the command:

>> logspace (-1, 2)

If we need to change the number of points between d1 and d2 rather than 50, use the
command:

>> logspace (dl,d2,n)

where n is the number of points to be generated.

For example, to generate 100 points between 1 rad/sec and 1000 rad/sec, use:
>>W=1logspace (0,3,100)
To draw the Bode plot, we use the command
>> sys=tf (num,den)
>> bode (sys, W)
To display the gain and phase margins
>> margin (sys)
Suppose we need to draw the Bode plot for the control system:
25(S +5)
GH(s) =
S(S2 +3S +10)(S + 50)
So we write the following Matlab code

7 Editor - E\SAU Cources\EE3511 Automatic Control\Bodel.m [ [~ E (]
Eile Edit Text Go Cell Tools Debug Desktop Window Help A A X
SH R T - e R-ER-RRBEIEBS »0O -
B | - (1o |+ | =11 | = |« | @
W=logspacs (—1,3,100) ; ™
num=25%[0 O O 1 5]:
den=[1 53 1&0 500 0O]:
bode (num, d=n, W)

grid

script Ln 5 Cal 5 OWR

The magnitude and phase plots are as shown below in Fig. 10, and it is clear that this

IS an unstable system.
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Fig. 10, Magnitude and phase plots
Example (1):
Obtain the phase and gain margins of the system shown below, for the two cases K=10
and K=100.

K C(s)’_
ss+1)(s+35)

First, we draw the Bode plot at K=10 as shown in Fig. 11, and calculate the Gain and
Phase margins as:
G.M. = 8 dB (+ve) and Phase Margin = 21° (+ve). This gives Stable System
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Fig. 11, Bode plot at K=10

Now, the system gain is changed to 100.

Changing the system gain change the magnitude plot up or down depending on K. But
the phase plot is not affected at all.
Therefore, no need to re-plot the gain plots at the new gain, but we can modify each

point on the magnitude plot up by 20 dB (20 log100 - 20 log10) as shown in Fig. 12,
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Fig. 12, Bode plot at K=100
From Fig. 11, the Gain and Phase margins are:
G.M. = 12 dB (-ve) and Phase Margin = 30° (-ve). This gives Unstable System

6. Finding T.F. & Steady-State Error Coefficient from Bode Plot

The asymptotic Bode plot must have slopes of multiples of + 20dB/decade. If the
slope is changed from -20 to -40 dB/decade at =, this means there is one pole at o1
Also, If the slope is changed from -20 to -60 dB/decade at w=w>, this means there is

quadratic poles at m:
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On the other hand, if the slope is changed from -20 to 0 dB/decade at w=w1, this
means there is one zero at 1. Also, If the slope is changed from -20 to +20 dB/decade
at ®=w>, this means there is quadratic zeros at m;

The type of the system determines the slope of the log-magnitude curve at low
frequencies. Now, to calculate how many poles at origin (system type) and the system
gain (K), we need to examine the first portion of the plot as follows:

6.1 Type zero systems:

It follows that the low-frequency asymptote is a horizontal line at 20 log K, dB.

dB
—20 dB/decade

20 log K, /

—40 dB/decade

e

w in log scale

6.2 Type one systems

The intersection of the initial -20-dB/decade segment (or its extension) with the line ®
= 1 has the magnitude 20 log Ky
The intersection of the initial -20-dB/decade segment (or its extension) with the 0-dB
line has a frequency numerically equal to K..

dB

—20 dB/decade

Kt‘ =

a

Tl R =
W) w in log scale

—40 dB/decade

s
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6.3 Type two systems

The intersection of the initial -40-dB/decade segment (or its extension) with the w =1

line has the magnitude of 20 log K.

The frequency . at the intersection of the initial -40-dB/decade segment (or its

extension) with the 0-dB line gives the square root of Ka numerically.

dB A
—40 dB/decade

#

—60 dB/decade

rL _201log K,
- g

-20 dB/decade

 in log scale

Example (2)
Consider the magnitude plot of the open-loop T.F. given below:

&l

— | |

40 —40 dB/dec
[

.

I

20 = J0dBidec

0 /‘,_

Zero dB crossing

I
Frequency (radfs)

Obtain:
a) The steady-state error coefficient
b) The open-loop T.F.
Referring to the first section in the magnitude plot given above, we find the initial
slope is —40 dB/dec, this means this system is type 2.
We can calculate the acceleration error coefficient Ka from the point of intersection

between the extension of —40 dB/dec line with 0 dB line which is 3.0 rad/s
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JK;, =3 - K, =9
Also, we can get K, by obtaining the magnitude at ® = 1
20log(K,) =191 - K, =9

Therefore, the system gain K = Ky =9 and the open-loop T.F. is given as:

9(1 +JT‘”)
()

GH(jw) =

Example (3)
Consider the magnitude plot of the open-loop T.F. given below:

30

I
Frequency {rad/s)

Obtain:
a) The steady-state error coefficient
b) The open-loop T.F.
Referring to the first section in the magnitude plot given above, we find the initial
slope is 0 dB/dec, this means this system is type 0.
We can calculate the position error coefficient K, as
20logK, =25 - K, =17.7828

Therefore, the system gain K = K, = 17.7828 and the open-loop T.F. is given as:

17.7828 (1 +%“’) (1 +%‘")

(1+3) (1) (1+55)

Referring to Fig. below, we see that if we desire certain phase margin, represented by

GH(jw) =

7. Design Via Gain Adjustment

CD, we would have to raise the magnitude curve by AB. Thus, a simple gain

adjustment can be used to design phase margin.
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M (dB)
[

Required
. Increase in gain

Phase (degress)
[

On the other hand, if we desire certain gain margin, represented by AC, and from the
system Bode plot we find the actual gain margin is AB (as shown in Fig. below).
Therefore, we would have to decrease the magnitude curve by BC. Thus, a simple gain
adjustment can be used to design gain margin also.

M (dB)
[

log o

A
E\Ec‘mal Gain Margin
|

| |
Phase (degrees) C ? —L\
| -

iy

O 0

Design Procedure:

e Assume the system gain K = 1 (At this value, the magnitude plot is not affected
as 20 log(1) = 0. And the phase plot is not affected as the £1 =0°)
Draw the system Bode magnitude and phase plots.

Based on the required Gain Margin or required Phase Margin, determine the

amount of increment or decrement in the magnitude plot.
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Example (4)
For the open loop transfer function given below:

500K (S + 2)
S (S+ 1)(S2 + 55 + 100)

GH(s) = (S =jw)

a) Construct the Bode plots,

b) The Gain crossover frequency and the Gain Margin,

¢) The phase crossover frequency and the Phase Margin,

d) Design the value of K to change the gain crossover frequency to 1 rad/s, then find
the corresponding Gain and Phase Margins,

e) Design the value of K to give a phase margin of 54°, then find the gain crossover
frequency and the corresponding Gain Margin,

f) Design the value of K to give a critical stable system.

For the transfer function given below:

500 K (S + 2)

H) = 5T )52 + 55 + 100)

we put the T.F. in Bode form as:

10K (1+13)

jow (1 +J—){1 +5]a)_|_ ( w)Z}

H(s) =

100 ° \10

Assuming K =1,

The Bode gain = 20 log (10) =20 dB

The total magnitude and total phase are plotted as given in semi-log paper.

a) Bode plots are sketched as given in semilog paper.

From Bode plots:

b) The gain crossover frequency = 4.8 rad/s & Gain Margin = 2dB

¢) The phase crossover frequency = 6.4 rad/s & Phase Margin = 14°

d) To change the gain crossover frequency to 1.0 rad/s, the total magnitude at this
point must be zero dB. But from Bode plot, it is found that the total magnitude is +20

dB, so it is recommended to add -20 dB at that point
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20logK = —20
K=0.1
At this value of K, Gain Margin= 22 dB and Phase Margin = 72°
e) To change the phase margin to 54°, this mean the gain crossover frequency must be
changed to 1.8 rad/s, and the total magnitude at this point must be zero dB. But from
Bode plot, it is found that the total magnitude is +10 dB, so it is recommended to add
-10 dB at that point

20logK = —10
K =0.316, At this value of K, Gain Margin=12 dB

| 6H @)
Lo
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Example (5)
A system for controlling the performance of an aircraft in the lateral mode is
equivalent to a single loop with open loop transfer function:

250K (S + 20)
S(S +5)(S + 10)2

G(SH(S) =

a) Draw Bode plots at gain K =1 and discuss the system stability.
b) Find the value of K to get phase margin of 45°
¢) Find the value of K to get gain margin of 20 dB

250K (S + 20)
S(S +5)(S + 10)2
250 x 20K(1 +25

G(S)H(S) =

G(w)H(w) =

5><100]w(1+ )(1+ L9?

10K (1 + —0)

jw (1 +]a)) (1 +]0)2

G(w)H(jw) =

AtK=1

For the Bode gain 10, it can be represented as 20 log (10) =20 dB

Pole at origin: the magnitude is represented by a straight line with slope of -20
dB/decade and intersect the 0dB line at =1 and extended to intersect the vertical axis.
But the phase is represented by straight line parallel to horizontal axis with constant
value at -90°.

Real zero (S+20): the magnitude is represented by a straight line with slope of +20

dB/decade and intersect the 0dB line at ®=20. The phase is represented as:
0 at w < 2
qo =

+45 atw = 20
+90 atw > 200

Real Pole (S+5): the magnitude is represented by a straight line with slope of -20

dB/decade and intersect the 0dB line at ®=5. The phase is represented as:
0 atw<05
@ =

—45 atw =5
—90 atw > 50

Repeated Real Pole (S+10): the magnitude is represented by a straight line with
slope of -40 dB/decade and intersect the 0dB line at ®=10. The phase is represented
as:
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0 atw <1
=43 -90 atw =10
—180 atw > 100

From Bode plot shown on semi-log paper, we find that
a) w1 =6.6rad/s —  Phase margin =-13°
oc=4.7rad/ls —  Gain margin = -5 dB, this mean the system is unstable ##

b) At Phase margin = 45°, the system magnitude is +20 dB
Then 20 log (K) =-20 > K=0.1 Hit

c) To get Gain margin of 20 dB,
20 log (K) = -(20+5) K =0.05623

7. Closed-Loop Frequency Response

Consider the second-order system given in Fig. 13, whose open-loop T.F. is given as:

2

S(S + 20w,)

G(s)H(s) =

Also, the closed-loop T.F. is given as:

C(s) _ %
R(s) S2+ 2{w,S + w,?

Ris) + 3 z Ei(s) w3
—_—
T sis+280y)

Fig. 13, Second-order system

To obtain the closed-loop frequency response, replace each S in the closed-loop T.F

by jo as follows:

Cw) _ Wy, ” _ %

R(Gw) (w)?+2(w,(jw) + w2 wy? — w? + j2{w,w
The magnitude [M(jo)] of the above closed-loop T.F. is:

Wy, >

IM(jw)| =
\/(wnz — w2)2 4+ 42w, 2w?
The magnitude plot obtained from the representation of M(jw) with respect to o is

shown in Fig. 14.
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frequency (rad/s) “p @BW

Fig. 14, Magnitude plot of closed-loop T.F.
From the above figure, there is a peak value which is 20xlog(Mp) in dB or My in
actual scale. To obtain this peak value (Mp), we get the derivative dM(jo)/do and
equating it to zero as follows:
dM (jw) _ —0.5w,%(4w? — 4w, *w + 8% w,*w) )
dw (W% — w?)? + 4{%w,2w?

The frequency at which peak value is occurred is called peak frequency (wp)

4w, — 4wy w, + 872 w,*w, =0
wp(wp? + 20%w,? — w,?) =0

wp? = w,*(1—27%) - Wy = wp/1— 202

To get the peak magnitude My, substitute with the value of wp in the equation

wy,?

Mp = |M(iw)|a)=a)p =

\/(wnz — w02(1 = 202))" + 42wp 2w, 2 (1 — 202)

1
M, =——
P2 12

The effect of changing damping ratio on My and wp is shown in Fig. 15.

£=0.01

- o)
P : \
-40 dB t -ttt t t ll!lll\l
I

0.01 0.1
frequency ratio (/i ©,)

Fig. 15, Peak amplitude at different damping ratios
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The Band Width frequency (wsw), is frequency at which the magnitude response curve
is 3 dB down (on log scale) (or 1/¥2=0.7071 on normal scale) from its value at zero
frequency.

Wy, >

1 1
— X [M(j@)|yep = — X 1 = 0.7071 =
V2 =0 V2 \/((Dnz — wpw?)? + 42w, wpy?

Wy = wnJl — 202 4+ /404 — 402 + 2
Example (6)
Find the closed-loop bandwidth required for 20% overshoot and 2-seconds settling

time.

The maximum overshoot is 0.2, and as we know it is given by:
UXY

02=e VI-C - ¢ =045595
The settling time (based on £2% tolerance) is given as:

4
T, =2= - w, =4.38645rad/s
{ wn

The BW frequency is calculated from:

wBW=wn\/1—2(2+J4(4—4(2+2

Wpy = 4.38645\/1 — 2% 0.20789 + V4 x 0.04322 — 4 x 0.20789 + 2 = 5.79 rad /s

Example (7)

For the closed-loop T.F given below,
C(s) 5
R(s) S?2+25+5

Calculate the peak amplitude (M), frequency (wp) at which My is occurred and the

band width (BW) of the closed-loop frequency response. Then give a free-hand sketch
for the closed-loop frequency response.

Since the system is 2" order system, we can use the equations given above. But, first
we need to calculate { and n. By comparing the characteristic egn. of the given

system with the standard one:
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S% + 2{w,S + 0,2 =0
We obtain that:
w,2=5 - w, =5

2w, =2 - (=1/\5
w, = wp/1— 272 =V5V1—2x0.2 =3 =1.7321
1 1

1

P 26\/1—62:%\/71—0.2 0.8
5

Wy = wn\/l — 202 +.,J40* — 42 + 2 = \/g\/O.B ++v1.36 = 3.1354

rad/sec
o

Example (8)

The open-loop T.F of a unity-feedback control system is
() =557

And the closed-loop frequency response |M (jw)| versus  is given in figure below.

rad/sec
2 w

0
Find the value of K and a, then calculate the band width (BW)

The closed-loop T.F. is:
C(s) _ K
R(s) S?+aS+K
By comparing the characteristic eqn. of the given system with the standard one:
S+ 20w,S + w,? =0
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We obtain that:
wy? =K

2(w, = a

From the closed-loop frequency response, My = 1.5 and wp = 2 rad/s

1
M,=15=——719Y—¥—
’ 20\T= 02
3012 =1
9*(1-¢*) =1
9¢* -9 +1=0
Let (2 = X, therefore, { = VX
9x2—9x+1=0
X=0.87278, — (= 0.93423
X =0.127322, — (= 0.3568
Wy =2 = w1 — 202

At {=0.93423,

2 2
- J1-22 JV1-2x0.87278
Therefore, { = 0.93423 is rejected.

2 2

S J1-202 V1-2x0.127322

Wn this gives imaginary value

Wy, = 2.3166rad/s

£=0.3568 and on = 2.3166
K = w,? = 5.3665
a = 2lw, = 2 X 0.3568 x 2.3166 = 1.6531

Wy = wn\/l — 202+ Jalt — 402 + 2 = 2.3166J0.745356 +/1.5556 = 3.27 rad/s

Example (9)
The open-loop T.F of a unity-feedback control system is,
60
S(S+2)(S+6)

Calculate the peak amplitude (Mp), frequency at which My is occurred (wp) and the
band width (BW) of the closed-loop frequency response.

G(s) =

The closed-loop T.F. is:
C(s) 60 60

R(s) S(S+2)(S+6)+60 T 53 +852+ 125 + 60
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This is a 3" order system, so we can’t use the equations given as a function of { and n
C(w) 60 60

R(Gw) (o) +8(Gw)? + 12(jw) + 60 (60 — 8w2) + j(12w — w3)
C(jw) 60
RGw)| V(60 — 8w?)2 + (12w — w3)?
dM (jw) _ —60 % 0.5(...)7%°{256w3 — 1920w + 288w + 6w° — 96w3} )
dw (60 — 8w?)? + (12w — w3)?
256w3 — 1920w + 288w + 6w° — 96w3 = 0

6w° + 160w3 — 1632w =0
w* +26.6667w* — 272 =0

M(jw) = ‘

Let =X, — @ = VX

x?+26.6667x* —272 =0
X = -34.5413 (rejected)
x =7.874632 (accepted) — wp=2.8062

= 5.0175

‘C(jw) 60

R(jw)| . [(60 — 8 x 7.874632)% + 7.874632(12 — 7.874632)2
Wp

8. Relation Between Open-& Closed-Loop Frequency Responses (Nichole Chart)

The Bode plot is generally constructed for an open loop transfer function of a system.
In order to draw the Bode plot for a closed loop system, the transfer function has to be
developed, and then factorized to its poles and zeros. This process is tedious and
cannot be carried out without the aids of a powerful calculator or a computer.

Nichols, developed a simple process by which the unity feedback closed-loop
frequency response of a system can be easily deduced from the open-loop transfer
function. This approach is outlined as follows:

Consider a unity feedback control system given in Fig. 16.

Input Output
Ris) 4 .. Cis)
22— 6@ -

Fig. 16, Unity feedback control system
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The closed-loop T.F. is:

C(s)  G(s)
R(s) 1+4+G(s)

The polar plot of G(jw) in the GH plane is shown in Fig. 17. Where the vector OA

represents the magnitude and angle of G(jo) in G-plane.
Im }

G Plane

ra— R [ ol foo)] —=

ik =

O/

1 G e

T [ €A e ]
ol jiewr ) —L-—
*EHI

rl

i =1}

Fig. 17, Polar plot for G(jo) represented in G-plane
Assuming that the real part of G(jo) is X(®) and the imaginary part of G(jo) is Y(®).
Therefore, the closed-loop T.F. is expressed as:

Cw)  x(@) +jyw)
R(w) 1+ x(w)+jy(w) M0

o TS
JA+x)% + y2

x4 y?

(1+x)?+y?

M?(1+ x)? + M?y? = x> + y?
Expanding and collecting similar terms:
(1—-M?*»)x?—-2M?x—M?*?+ (1 —-M?)y?2=0
At M = 1; X (real part of G) =—0.5
At M # 1; the above equation is divided by (1-M?) and is rewritten as:
2M? M?

ME—1 w17

2

x?% +
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Completing square;
M2\ M2
<X+M2—1> +y?=
This is an equation of a circle with radius
M
M? -1
And its center at
MZ
M2 -1’
The representation of the circle equation given above at different values of M is given

X =— y=20

in Fig. 18. Thus, if the polar frequency response of an open-loop function, G(s), is
plotted and superimposed on top of the constant M circles, the closed-loop magnitude
frequency response is determined by each intersection of this polar plot with the

constant M circles.

Fig. 18, Constant M circles

The phase angle of the closed-loop T.F is given by:
y
1

Yy _
=tan 1= — tan
0 X x+1
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"W“

Taking tan for both sides:
y y
x x4+41 Yo+ -yx) y

142 Y x(x+1D+y?2  xZ+x+y?
x'x+1

tan(@) = N =

1
2 2 =0
x“+x+y Ny

Completing squares:

(+3) +0aw) =) + ()

This is an equation of a circle with radius

1O+

1
X=3 Y=3y

The representation of the circle equation given above at different values of N is given

2

And its center at

in Fig. 19. Superimposing a unity feedback, open-loop frequency response over the
constant N circles yields the closed-loop phase response of the system.

Both M and N circles are represented in one figure to get the magnitude and angle
easily as shown in Fig. 20. The main disadvantage of using the M and N circles is that
changes of gain in the open-loop transfer function, G(s), cannot be handled easily. For
example, in the Bode plot, a gain change is handled by moving the Bode magnitude
curve up or down an amount equal to the gain change in dB scale. Since the M and N
circles are not dB plots, changes in gain require each point of G(jo) to be multiplied in
length by the increase or decrease in gain.

Another presentation of the M and N circles, called a Nichols chart, displays the
constant M circles in dB, so that changes in gain are as simple to handle as in the Bode

plot. A Nichols chart is shown in Fig. 21.
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G-plane

Fig. 20, Constant M and N circles
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Sheet 10 (Bode Plots)

(1) For the following transfer functions, sketch the Bode plots:

1

G(s)= (s+1)(s+10)

_ (s+10)

G)=——"—"77—
(s+1)(s+20)

1

G(s)= (s® + 25 +50)

_ 10(s+10)

G(9)= s(s+1)(s + 20)

3 (s—5)
G(s)= (s +1)(s? +12s + 50)

3 1(s+5)
 s3(s+1)(s+10)

G(s)

(2) For each of the following transfer functions, sketch the Bode diagram and

determine the gain crossover frequency (that is, the frequency at which the

magnitude of G(j»)=20 log |G(jw)= 0 dB, and the phase crossover frequency

(that is, the frequency at which the phase angle of G(jw)=-180°:

G(s)

~ 1000
(s +10)(s+2)

G(s)

~ 100
(s +0.2)(s? + s+ 20)

G(s)

_ 50(s+10)
(s +1)(s +100)

G(s)

_1000(s” +14s +50)
(s+5)(s+80)(s+500)

(3) Consider the non-unity feedback system in Figure (1), where the controller

gain is K=2. Sketch the Bode plot of the open loop transfer function. Determine

the phase angle of the open loop transfer function when the magnitude equals
to 0 dB.

Conteoller, G.(5)

Process, (i(s)

1

K

4+ L4y~

Sensor. His)

10

s+ 10

Figure (1) Non-unity feedback system with controller gain K

(4) Consider the system given in Figure (2) where
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K(s+5)
(s+10)
1
« Gol8)= s(s? +25+2)
e H(s)=1
(a) Find K such that the velocity error coefficient K,=10
(b) Draw the Bode plot of the open-loop system
(c) From the Bode plot, find the frequency corresponding to 0 dB gain
(d) From the Bode plot, find the frequency corresponding to -180° phase

° Gc (S) =

P

lant |

Controller

R(s)
_,.®_> G() f—> G —

Figure (2) A closed-loop control system

(5) The asymptotic log-magnitude curves for two transfer functions are given in
Figure (3). Sketch the corresponding asymptotic phase angle curves for each system.
Determine the transfer function for each system.

1.

;20—
/- 20 dB/dec N,
0

10.0 \__" oz & / I :'~:x1\ > log w
20 dididec

40 dB/dec

20 loplL (dB)

(a) ()
Figure (3) Log-magnitude curves

(6) A position control system may be constructed by using an AC motor and AC
components, as shown in Figure (4-a). To measure the open-loop frequency
response, we simply disconnect X from Y and X' from Y' and then apply a sinusoidal
modulation signal generator to the Y - Y' terminals and measure the response at X -
X'. The resulting frequency response of the loop transfer function L(jw)=
G jw)G(jw)H(jw), is shown in Figure (4-b). Determine the transfer function L(jw).
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— [T

NAAAS
Control Reference winding

Lwinding AC two-phase motor

ﬁx

amplifier

Control transtformer

40
\ ~20 dB/dec

20

-00°
~40 dB/dec
d(w) —180°
-270° |
=360° L.
~B0 dB/ded 10

100 1000
w (rad/s)

20 loglL(jw)] (dB)
S

|
»
o

]

Figure (4) (a) AC motor control, (b) Frequency response

(7) A helicopter with a load on the end of a cable is shown in Figure (5-a). The
position control system is shown in Figure (5-b), where the visual feedback is

represented by H(s). Sketch the Bode diagram of G(jw)H(jw).

(a)

Figure (5) A helicopter feedback control system
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(8) Sketch Bode plot of a system with transfer function

G(s) = K@ +20.1s)
S(1+2s)(s“ +2s+2)

(a) k=10

(b) K=20

(c) Compare plots obtained in (a) and (b)
(9) A system has the loop transfer function

2.5(1+s/5
G(s) = ( ) 5
SA+2s)(L+s/7+s°/49)

Plot the Bode diagram. Show that the phase margin is approximately 28" and that the
gain margin is approximately 21 dB.

(10) Consider a unity feedback system with the loop transfer function

10(1+ 0.4s)

G(s)H(s) = s(1+25)(L+ 0.24s + 0.045%)

(a) Plot the Bode diagram,

(b) Find the gain margin and phase margin.

(11) The experimental Obliqgue Wing Aircraft (OWA) has a wing that pivots, as shown
in Figure (6). The wing is in the normal unskewed position for low speeds and can
move to a skewed position for improved supersonic flight. The aircraft control system
loop transfer function is

K(1+0.5s)
s(L+2s)[L+ (5/20) + (5/8)?]

G(8)G,(s) =

Maximum skewed
wing poesition

-~
-~
-
~
~

~

Figure (6) The Obliqgue Wing Aircraft, top and side
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(a) Sketch the Bode diagram when K=4,
(b) Find the gain margin and phase margin,
(c) Find the value of K for critical stable system.

(12) Consider a unity feedback system with the following open-loop transfer

function:
K

T s(s+1)(5+2)

(a) For K=4, show that the gain margin is 3.5 dB,

(b) If we wish to achieve a gain margin equal to 16 dB, determine the value of the
gain K.

G(s)

(13) A closed-loop system, as shown in Figure (7) has H(s)=1 and
K

G(s)G () = s(1+0.02s)(L+ 0.02s)

Controller Process

G5) » G5

Senson

H(s)

Figure (7) Feedback control system
(a) Select a gain K so that the steady-state error for a ramp input is 10% of the
magnitude of the ramp function A, where r(t) = At, t> 0,
(b) Plot the Bode plot of G.(s)G(s), and determine the phase and gain margins.

(14) An electric carrier that automatically follows a tape track laid out on a factory
floor. Closed-loop feedback systems are used to control the guidance and speed of
the vehicle. The block diagram of the steering system is shown in Figure (8). Select a
gain K so that the phase margin is approximately 30° .

Fhaotormransisior
Array

Mator and can dysamics

| Yis)

+
R[.\ _—*{j’__h > ] + - .
_ (s/10 + 1){s* + = + 2} Car! heading,

T

Figure (8) Feedback steering control system
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(15) Consider the system shown in Figure (9).

Figure (9) Feedback control system

(a) Draw a Bode diagram of the open-loop transfer function,
(b) Determine the value of the gain K such that the phase margin is 50°,
(c) What is the gain margin of this system with this gain K?
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