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CHAPTER 12 FREQUENCY RESPONSE ANALYSIS (Bode Plots) 

After completing this chapter, the students will be able to: 

• Plot asymptotic approximations to the frequency response of an open-loop 

control system, 

• Use the Bode plot to determine the stability of open-loop systems 

• Find the bandwidth, peak magnitude, and peak frequency of a closed-loop 

frequency response. 

1. Introduction 

Frequency response methods, developed by Nyquist (1930) and Bode (1945), are older 

than the root locus method, which was discovered by Evans in 1948. 

Obtaining the frequency response from the transfer function by substituting the value 

of (ω) directly in the system transfer function is a tedious task. The frequency range 

required in frequency response is often so wide that it is inconvenient to use a linear 

scale for the frequency axis. Also, there is a more systematic way of locating the 

important features of the magnitude and phase plots of the transfer function. For these 

reasons, it has become standard practice to use a logarithmic scale for the frequency 
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axis and a linear scale in each of the separate plots of magnitude and phase. Such 

semi-logarithmic plots of the transfer function—known as Bode plots—have become 

the industry standard. Bode plots contain the same information as the non-logarithmic 

plots, but they are much easier to construct. 

The transfer function GH(s) can be expressed as: 

𝐺𝐻(𝑠) =  |𝐺𝐻|∠𝜑 

Since Bode plots are based on logarithms, it is important that we keep the following 

properties of logarithms in mind: 

log 𝑋1𝑋2 = log 𝑋1 + log 𝑋2 

log 𝑋1/𝑋2 = log 𝑋1 − log 𝑋2 

log 𝑋1
2 = 2 log 𝑋1 

log 1 = 0 

2. The Decibel Scale 

In communications systems, gain is measured in Bels. The bel is used to measure the 

ratio of two levels of power or power gain G; that is, 

𝐺 = log
𝑃1

𝑃2
      𝐵𝑒𝑙𝑠 

Deci is a suffix express 10 times of the quantity. 

𝐺 = 10 × log
𝑃1

𝑃2
      𝑑𝑒𝑐𝑖𝐵𝑒𝑙𝑠 

deciBels or (dB) provides less magnitude. Decibels is 1/10 of bels. 

Consider the electric network shown in Fig. 1. 

 

Fig. 1, Simple electric circuit 

If P1 is the input power, P2 is the output (load) power, R1 is the input resistance, and R2 

is the load resistance, then: 
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𝑃1 =
𝑉1

2

𝑅1
=  𝐼1

2𝑅1 

𝑃2 =
𝑉2

2

𝑅2
=  𝐼2

2𝑅2 

Assuming that R1 = R2 a condition that is often assumed when comparing voltage 

levels, then: 

𝐺𝑑𝐵 = 10 × log
𝑃1

𝑃2
= 10 × log (

𝑉1

𝑉2
)

2

= 20 × log (
𝑉1

𝑉2
) 

By the same way, assuming that R1 = R2 a condition that is assumed for comparing 

current levels, then: 

𝐺𝑑𝐵 = 10 × log
𝑃1

𝑃2
= 10 × log (

𝐼1

𝐼2
)

2

= 20 × log (
𝐼1

𝐼2
) 

To conclude the above information: 

• 10 log is used for power, while 20 log is used for voltage or current, because of 

the square relationship. 

• The dB value is a logarithmic measurement of the ratio of one variable to 

another of the same type. Therefore, it applies in expressing the transfer 

function. 

In Bode plots, the magnitude is plotted in Decibels (dB) versus frequency. The dB 

quantity can be obtained as: 

𝐺𝐻𝑑𝐵 = 20 log 𝐺𝐻 

Moreover, the phase angle (φ) is plotted versus frequency. Both magnitude and phase 

plots are made on semi-log graph paper. 

 

3. Asymptotic Bode Plots (Open-Loop Frequency Response) 

The log-magnitude and phase frequency response curves as functions of log ω are 

called Bode plots or Bode diagrams. Sketching Bode plots can be simplified because 

they can be approximated as a sequence of straight lines. Straight-line approximations 

simplify the evaluation of the magnitude and phase frequency response. 

Consider the following transfer function that may be written in terms of factors that 

have real and imaginary parts such as: 
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𝐺(𝑗𝜔) =  
𝐾 (1 +

𝑗𝜔
𝑧1

) (1 +
𝑗𝜔
𝑧2

) {1 + 𝑗2𝜉1
𝜔

𝜔𝑛
+ (

𝜔
𝜔𝑛

)
2

} …

(𝑗𝜔)±1 (1 +
𝑗𝜔
𝑝1

) (1 +
𝑗𝜔
𝑝2

) {1 + 𝑗2𝜉2
𝜔

𝜔𝑛
+ (

𝜔
𝜔𝑛

)
2

} …
 

this is called the Bode (Standard) form of the system transfer function that may 

contain seven different factors: 

• Bode gain K 

• Pole at origin (𝑗𝜔)−1 or zero at origin (𝑗𝜔)+1 

• Real pole (1 +
𝑗𝜔

𝑝1
)

−1
 and/or real zero (1 +

𝑗𝜔

𝑧1
) 

• Quadratic pole {1 + 𝑗2𝜉2
𝜔

𝜔𝑛
+ (

𝜔

𝜔𝑛
)

2
}

−1

 or quadratic zero {1 + 𝑗2𝜉1
𝜔

𝜔𝑛
+ (

𝜔

𝜔𝑛
)

2
} 

In constructing a Bode plot, we plot each factor separately and then combine them 

graphically. The factors can be considered one at a time and then combined additively 

because of the logarithms involved. For this mathematical convenience of the 

logarithm, Bode plots is considered as a powerful engineering tool.  

In the following subsections, we will make straight-line plots of the factors listed 

above. These straight-line plots known as asymptotic (approximate) Bode plots. 

 

3.1 Bode Gain 

For the gain K, there are two cases: 

K is +ve and less than one: the magnitude 20 log K is negative and the phase is 0◦; 

K is +ve and greater than one: the magnitude 20 log K is positive and the phase is 0◦; 

K is -ve and less than one: the magnitude 20 log K is negative and the phase is -180◦; 

K is -ve and greater than one: the magnitude 20 log K is +ve and the phase is -180◦; 

Both of the magnitude and phase are constant with frequency. Thus the magnitude and 

phase plots of the gain are shown in Fig.2. 
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Fig. 2, Magnitude and phase plots of Bode gain 

3.2 Zero at origin 

For the zero (jω) at the origin, the magnitude is 20 log10 ω and the phase is 90◦. These 

are plotted in Fig. 3, where we notice that the magnitude is represented by a straight 

line with slope of 20 dB/decade and intersect the 0dB line at ω=1 and extended to 

intersect the vertical axis. But the phase is represented by straight line parallel to 

horizontal axis with constant value at 90. 

ونمده ω 1 =ديسبل لكل ديكاد ويمر بخط الصفر ديسيبل عند  20القيمة تمثل بخط مستقيم ميله   

ωحور درجة وتمثل بخط مستقيم موازى لم 90أما الزاوية فقيمتها ثابتة عند   

 

Fig. 3, Magnitude and phase plots of zero at origin 

In general, for multiple zeros at origin (jω)N, where N is an integer, the magnitude plot 

will have a slope of (20×N) dB/decade. But the phase is (90×N) degrees. 

3.3 Pole at origin 

For the pole (jω)-1 at the origin, the magnitude is -20 log10 ω and the phase is -90◦. 

These are plotted in Fig. 4, where we notice that the magnitude is represented by a 

straight line with slope of -20 dB/decade and intersect the 0dB line at ω=1 and 

extended to intersect the vertical axis. But the phase is represented by straight line 

parallel to horizontal axis with constant value at -90. 

ونمده ω 1 =د ويمر بخط الصفر ديسيبل عند يديسبل لكل ديك -20القيمة تمثل بخط مستقيم ميله   

ωبخط مستقيم موازى لمحور  درجة وتمثل -90أما الزاوية فقيمتها ثابتة عند   
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In general, for multiple poles at origin (jω)-N, where N is an integer, the magnitude 

plot will have a slope of - (20×N) dB/decade. But the phase is - (90×N) degrees. 

 
Fig. 4, Magnitude and phase plots of pole at origin 

3.4 Real Zero 

The magnitude of a real zero (1 +
𝑗𝜔

𝑧1
) is obtained from 20 𝑙𝑜𝑔 |1 +

𝑗𝜔

𝑧1
|, and the phase 

is obtained from 𝑡𝑎𝑛−1 (
𝜔

𝑧1
). We notice that: 

- For small values of ω, the magnitude is  20 𝑙𝑜𝑔 |1 +
𝑗𝜔

𝑧1
| ≅ 20 log 1 = 0 

- For large values of ω, the magnitude is 20 𝑙𝑜𝑔 |1 +
𝑗𝜔

𝑧1
| ≅ 20 log |

𝜔

𝑧1
| 

From the above two points, we can approximate the magnitude of real zero by two 

straight lines (at ω → 0 : a straight line with zero slope with zero magnitude) and (at ω 

→ ∞ : a straight line with slope 20 dB/decade). At the frequency ω = z1 where the two 

asymptotic lines meet is called the corner frequency. Thus, the approximate magnitude 

plot is shown in Fig. 5. The actual plot for real zero is also shown in that figure. Notice 

that the approximate plot is close to the actual plot except at the corner frequency, 

where ω = z1 and the deviation is 20 𝑙𝑜𝑔|1 + 𝑗1| ≅ 20 log √2 = 3 𝑑𝐵. 

 ولانمده ω  =1Zديسبل لكل ديكيد ويمر بخط الصفر ديسيبل عند  +20القيمة تمثل بخط مستقيم ميله 

ونصل بينهما بخط مستقيم  90( الزاوية = 110Z( الزاوية = صفر، ثم ديكيد بعد )10/1Zقبل )ديكيد الزاوية: 

 درجة لكل ديكيد 45ليكون ميل الخط 

 
Fig. 5, Magnitude and phase plots of real zero 
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The phase angle of real zero that given as 𝑡𝑎𝑛−1 (
𝜔

𝑧1
) is represented as a straight-line 

approximation, φ = 0 for ω ≤ z1/10, φ = 45◦for ω = z1, and φ = 90◦ for ω ≥ 10z1 as 

shown in Fig. 4. The straight line has a slope of 45 per decade. 

 

For example, consider the real zero (S+1), it will be (1+jω) in the Bode form. Then: 

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 20 log(√1 + 𝜔2) ,    𝑝ℎ𝑎𝑠𝑒 = 𝑡𝑎𝑛−1
𝜔

1
 

The following table shows the actual and asymptotic values of the magnitude and 

phase of that real zero. 
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3.5 Real Pole 

The magnitude of a real pole (1 +
𝑗𝜔

𝑝1
)

−1
 is obtained from −20 𝑙𝑜𝑔 |1 +

𝑗𝜔

𝑝1
|, and the 

phase is obtained from −𝑡𝑎𝑛−1 (
𝜔

𝑝1
). We notice that: 

- For small values of ω, the magnitude is  −20 𝑙𝑜𝑔 |1 +
𝑗𝜔

𝑝1
| ≅ 20 log 1 = 0 

- For large values of ω, the magnitude is −20 𝑙𝑜𝑔 |1 +
𝑗𝜔

𝑝1
| ≅ −20 log |

𝜔

𝑝1
| 

From the above two points, we can approximate the magnitude of real pole by two 

straight lines (at ω → 0 : a straight line is with zero slope and zero magnitude) and (at 

ω → ∞ : the straight line is with slope -20 dB/decade). At the frequency ω = p1 where 

the two asymptotic lines meet is called the corner frequency. Thus, the approximate 

magnitude plot is shown in Fig. 6. The actual plot for real pole is also shown in that 

figure. Notice that the approximate plot is close to the actual plot except at ω = p1, the 

deviation is −20 𝑙𝑜𝑔|1 + 𝑗1| ≅ −20 log √2 = −3 𝑑𝐵. 

 ولانمده ω  =p1ديسبل لكل ديكيد ويمر بخط الصفر ديسيبل عند  -20القيمة تمثل بخط مستقيم ميله 

The phase angle of real pole that given as −𝑡𝑎𝑛−1 (
𝜔

𝑝1
) is represented as a straight-line 

approximation, φ = 0 for ω ≤ p1/10, φ = -45◦for ω = p1, and φ = -90◦ for ω ≥ 10p1 as 

shown in Fig. 6. The straight line has a slope of -45 per decade. 

ونصل بينهما بخط مستقيم  90-( الزاوية = 10p1( الزاوية = صفر، ثم ديكيد بعد )p1/10الزاوية: ديكيد قبل )

 درجة لكل ديكيد -45ميل الخط ليكون 
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Fig. 6, Magnitude and phase plots of real pole 

3.6 Quadratic Zero 

The magnitude of a quadratic zero {1 + 𝑗2𝜉2
𝜔

𝜔𝑛
+ (

𝜔

𝜔𝑛
)

2
} is obtained as 

20 log |1 + 𝑗2𝜉2

𝜔

𝜔𝑛
+ (

𝜔

𝜔𝑛
)

2

| = 0 𝑓𝑜𝑟 𝜔 → 0 

20 log |1 + 𝑗2𝜉2
𝜔

𝜔𝑛
+ (

𝜔

𝜔𝑛
)

2
| = 20𝑙𝑜𝑔 |(

𝜔

𝜔𝑛
)

2
| = 40 𝑙𝑜𝑔 |(

𝜔

𝜔𝑛
)|  𝑓𝑜𝑟 𝜔 → ∞ 

Thus, the amplitude plot consists of two straight asymptotic lines: one with zero slope 

for ω < ωn and the other one with slope −40 dB/decade for ω > ωn, with ωn as the 

corner frequency. Figure 7 shows the approximate and actual amplitude plots. Note 

that the actual plot depends on the damping ratio ξ2 as well as the corner frequency ωn. 

The significant peaking in the neighborhood of the corner frequency should be added 

to the straight-line approximation if a high level of accuracy is desired. However, we 

will use the straight-line approximation for the sake of simplicity. 

The phase plot is a straight line with a slope of 90◦ per decade starting at ωn/10 and 

ending at 10ωn, as shown in Fig. 7. We see again that the difference between the 

actual plot and the straight-line plot is due to the damping factor. 
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Fig. 7, Magnitude and phase plots of quadratic zero 

For the quadratic pole {1 + 𝑗2𝜉2
𝜔

𝜔𝑛
+ (

𝜔

𝜔𝑛
)

2
}

−1

the plots shown in Fig. 7 are inverted 

because the magnitude plot has a slope of -40 dB/decade while the phase plot has a 

slope of -90◦ per decade. 

 
Since the asymptotes are quite easy to draw and are sufficiently close to the exact 

curve, the use of such approximations in drawing Bode diagrams is convenient in 

establishing the general nature of the frequency-response characteristics quickly with a 

minimum amount of calculation and may be used for most preliminary design work. 

 

4. Closed-Loop Stability Analysis Using Bode Plots 

The gain crossover frequency g is defined as the frequency at which the total 

magnitude equals 0 dB. Therefore, its value can be determined from the intersection of 

the total magnitude line with the 0 dB line as shown in Fig. 8. On the other hand, the 

phase crossover frequency p is defined as the frequency at which the total phase 

equals −180. Therefore, its value can be determined from the intersection of the total 

phase line with the −180 line as shown in Fig. 8. 



 

Electrical Engineering Department 
Dr. Ahmed Mustafa Hussein 

 

Benha University 
Faculty of Engineering at Shubra 

 

11 Chapter Twelve: Bode Plots                                                                 Dr. Ahmed Mustafa Hussein 
 

 

Fig. 8, Gain and Phase crossover frequencies 

The system Gain Margin (GM) in dB is the additional gain that makes the system on 

the edge of instability. GM can be determined by calculating the total magnitude at  

= p. Also, the system Phase Margin PM in degrees is the additional phase that makes 

the system on the edge of instability.  PM can be determined by calculating the total 

phase at  = g as shown in Fig. 9. 

 
Fig. 9, Gain and Phase Margins 
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5. Plotting Bode Plots Using Matlab 

To specify the frequency range for Bode plots, use the command: 

>> logspace(d1,d2) 

This generate 50 points logarithmically equally spaced between 10d1 and 10d2. 

For example, if we need Bode plot starts at 0.1 rad/sec and finish at 100 rad/sec, enter 

the command: 

>> logspace(-1,2) 

If we need to change the number of points between d1 and d2 rather than 50, use the 

command: 

>> logspace(d1,d2,n) 

where n is the number of points to be generated. 

For example, to generate 100 points between 1 rad/sec and 1000 rad/sec, use: 

>> W=logspace(0,3,100) 

To draw the Bode plot, we use the command 
>> sys=tf(num,den) 

>> bode(sys,W) 

To display the gain and phase margins 
>> margin(sys) 

Suppose we need to draw the Bode plot for the control system: 

𝐺𝐻(𝑠) =
25(𝑆 + 5)

𝑆(𝑆2 + 3𝑆 + 10)(𝑆 + 50)
 

So we write the following Matlab code 

 

The magnitude and phase plots are as shown below in Fig. 10, and it is clear that this 

is an unstable system. 
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Fig. 10, Magnitude and phase plots 

Example (1): 

Obtain the phase and gain margins of the system shown below, for the two cases K=10 

and K=100. 

 

First, we draw the Bode plot at K=10 as shown in Fig. 11, and calculate the Gain and 

Phase margins as: 

G.M. = 8 dB (+ve) and Phase Margin = 21 (+ve). This gives Stable System 
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Fig. 11, Bode plot at K=10 

Now, the system gain is changed to 100. 

Changing the system gain change the magnitude plot up or down depending on K. But 

the phase plot is not affected at all. 

Therefore, no need to re-plot the gain plots at the new gain, but we can modify each 

point on the magnitude plot up by 20 dB (20 log100 - 20 log10) as shown in Fig. 12. 
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Fig. 12, Bode plot at K=100 

From Fig. 11, the Gain and Phase margins are: 

G.M. = 12 dB (-ve) and Phase Margin = 30 (-ve). This gives Unstable System 

 

6. Finding T.F. & Steady-State Error Coefficient from Bode Plot 

The asymptotic Bode plot must have slopes of multiples of  20dB/decade. If the 

slope is changed from -20 to -40 dB/decade at =1, this means there is one pole at 1 

Also, If the slope is changed from -20 to -60 dB/decade at =2, this means there is 

quadratic poles at 2 
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On the other hand, if the slope is changed from -20 to 0 dB/decade at =1, this 

means there is one zero at 1. Also, If the slope is changed from -20 to +20 dB/decade 

at =2, this means there is quadratic zeros at 2 

The type of the system determines the slope of the log-magnitude curve at low 

frequencies. Now, to calculate how many poles at origin (system type) and the system 

gain (K), we need to examine the first portion of the plot as follows: 

6.1 Type zero systems: 

It follows that the low-frequency asymptote is a horizontal line at 20 log Kp dB. 

 
6.2 Type one systems 

The intersection of the initial –20-dB/decade segment (or its extension) with the line ω 

= 1 has the magnitude 20 log Kv 

The intersection of the initial –20-dB/decade segment (or its extension) with the 0-dB 

line has a frequency numerically equal to Kv.  
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6.3 Type two systems 

The intersection of the initial –40-dB/decade segment (or its extension) with the ω = 1 

line has the magnitude of 20 log Ka. 

The frequency ωa at the intersection of the initial –40-dB/decade segment (or its 

extension) with the 0-dB line gives the square root of Ka numerically. 

 
 

Example (2) 

Consider the magnitude plot of the open-loop T.F. given below: 

 
Obtain: 

a) The steady-state error coefficient 

b) The open-loop T.F. 

 

Referring to the first section in the magnitude plot given above, we find the initial 

slope is −40 dB/dec, this means this system is type 2. 

We can calculate the acceleration error coefficient Ka from the point of intersection 

between the extension of −40 dB/dec line with 0 dB line which is 3.0 rad/s 
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√𝐾𝑎 = 3     →  𝐾𝑎 = 9 

Also, we can get Ka by obtaining the magnitude at ω = 1 

20 log(𝐾𝑎) = 19.1      →    𝐾𝑎 = 9 

Therefore, the system gain K = Ka = 9 and the open-loop T.F. is given as: 

𝐺𝐻(𝑗𝜔) =
9 (1 +

𝑗𝜔
1

)

𝑗𝜔2 (1 +
𝑗𝜔
4

)
 

Example (3) 

Consider the magnitude plot of the open-loop T.F. given below: 

 

Obtain: 

a) The steady-state error coefficient 

b) The open-loop T.F. 

 

Referring to the first section in the magnitude plot given above, we find the initial 

slope is 0 dB/dec, this means this system is type 0. 

We can calculate the position error coefficient Kp as 

20 log 𝐾𝑝 = 25     →  𝐾𝑝 = 17.7828 

Therefore, the system gain K = Kp = 17.7828 and the open-loop T.F. is given as: 

𝐺𝐻(𝑗𝜔) =
17.7828 (1 +

𝑗𝜔
5

) (1 +
𝑗𝜔
8

)

(1 +
𝑗𝜔
4

) (1 +
𝑗𝜔
7

) (1 +
𝑗𝜔
9

)
 

7. Design Via Gain Adjustment 

Referring to Fig. below, we see that if we desire certain phase margin, represented by 

CD, we would have to raise the magnitude curve by AB. Thus, a simple gain 

adjustment can be used to design phase margin. 
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On the other hand, if we desire certain gain margin, represented by AC, and from the 

system Bode plot we find the actual gain margin is AB (as shown in Fig. below). 

Therefore, we would have to decrease the magnitude curve by BC. Thus, a simple gain 

adjustment can be used to design gain margin also. 

 

Design Procedure: 

• Assume the system gain K = 1 (At this value, the magnitude plot is not affected 

as 20 log(1) = 0. And the phase plot is not affected as the 1 = 0˚) 

• Draw the system Bode magnitude and phase plots. 

• Based on the required Gain Margin or required Phase Margin, determine the 

amount of increment or decrement in the magnitude plot. 
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Example (4) 

For the open loop transfer function given below: 

GH(s) =
500K (S + 2)

S (S + 1)(S2 + 5S + 100)
      (S = jω) 

a) Construct the Bode plots, 

b) The Gain crossover frequency and the Gain Margin,  

c) The phase crossover frequency and the Phase Margin, 

d) Design the value of K to change the gain crossover frequency to 1 rad/s, then find 

the corresponding Gain and Phase Margins, 

e) Design the value of K to give a phase margin of 54, then find the gain crossover 

frequency and the corresponding Gain Margin, 

f) Design the value of K to give a critical stable system. 

 

For the transfer function given below: 

 

𝐻(𝑠) =
500 𝐾(𝑆 + 2)

𝑆 (𝑆 + 1)(𝑆2 + 5𝑆 + 100)
 

we put the T.F. in Bode form as: 

𝐻(𝑠) =
10𝐾 (1 +

𝑗𝜔
2

)

𝑗𝜔 (1 +
𝑗𝜔
1

) {1 +
5𝑗𝜔
100

+ (
𝑗𝜔
10

)
2

}

 

Assuming K =1, 

The Bode gain = 20 log (10) = 20 dB 

The total magnitude and total phase are plotted as given in semi-log paper. 

a) Bode plots are sketched as given in semilog paper. 

From Bode plots: 

b) The gain crossover frequency = 4.8 rad/s & Gain Margin = 2dB 

c) The phase crossover frequency = 6.4 rad/s & Phase Margin = 14 

d) To change the gain crossover frequency to 1.0 rad/s, the total magnitude at this 

point must be zero dB. But from Bode plot, it is found that the total magnitude is +20 

dB, so it is recommended to add -20 dB at that point 
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20 log 𝐾 =  −20 

K = 0.1 

At this value of K, Gain Margin= 22 dB and Phase Margin = 72 

e) To change the phase margin to 54, this mean the gain crossover frequency must be 

changed to 1.8 rad/s, and the total magnitude at this point must be zero dB. But from 

Bode plot, it is found that the total magnitude is +10 dB, so it is recommended to add     

-10 dB at that point 

20 log 𝐾 =  −10 

K = 0.316,     At this value of K, Gain Margin= 12 dB 
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Example (5) 

A system for controlling the performance of an aircraft in the lateral mode is 

equivalent to a single loop with open loop transfer function: 

 

𝐺(𝑆)𝐻(𝑆) =  
250𝐾(𝑆 + 20)

𝑆(𝑆 + 5)(𝑆 + 10)2
 

 

a) Draw Bode plots at gain K = 1 and discuss the system stability. 

b) Find the value of K to get phase margin of 45 

c) Find the value of K to get gain margin of 20 dB 

 

𝐺(𝑆)𝐻(𝑆) =  
250𝐾(𝑆 + 20)

𝑆(𝑆 + 5)(𝑆 + 10)2
 

𝐺(𝑗𝜔)𝐻(𝑗𝜔) =  
250 × 20𝐾(1 +

𝑗𝜔
20

)

5 × 100 𝑗𝜔 (1 +
𝑗𝜔
5

) (1 +
𝑗𝜔
10

)2
 

𝐺(𝑗𝜔)𝐻(𝑗𝜔) =  
10𝐾(1 +

𝑗𝜔
20

)

 𝑗𝜔 (1 +
𝑗𝜔
5

) (1 +
𝑗𝜔
10

)2
 

At K = 1, 

For the Bode gain 10, it can be represented as 20 log (10) = 20 dB 

Pole at origin: the magnitude is represented by a straight line with slope of -20 

dB/decade and intersect the 0dB line at ω=1 and extended to intersect the vertical axis. 

But the phase is represented by straight line parallel to horizontal axis with constant 

value at -90. 

 

Real zero (S+20): the magnitude is represented by a straight line with slope of +20 

dB/decade and intersect the 0dB line at ω=20. The phase is represented as: 

𝜑 =  {
0        𝑎𝑡 𝜔 < 2

+45    𝑎𝑡 𝜔 = 20
+90   𝑎𝑡 𝜔 > 200

 

 

Real Pole (S+5): the magnitude is represented by a straight line with slope of -20 

dB/decade and intersect the 0dB line at ω=5. The phase is represented as: 

𝜑 =  {
0        𝑎𝑡 𝜔 < 0.5
−45    𝑎𝑡 𝜔 = 5
−90   𝑎𝑡 𝜔 > 50

 

 

Repeated Real Pole (S+10)2: the magnitude is represented by a straight line with 

slope of -40 dB/decade and intersect the 0dB line at ω=10. The phase is represented 

as: 
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𝜑 =  {
0        𝑎𝑡 𝜔 < 1

−90    𝑎𝑡 𝜔 = 10
−180   𝑎𝑡 𝜔 > 100

 

 

 

From Bode plot shown on semi-log paper, we find that 

a) ω1 = 6.6 rad/s  → Phase margin = -13 

    ωc = 4.7 rad/s → Gain margin = -5 dB, this mean the system is unstable ## 

 

b) At Phase margin = 45, the system magnitude is +20 dB 

Then 20 log (K) = -20 → K = 0.1  ## 

 

c) To get Gain margin of 20 dB,  

20 log (K) = -(20+5)  K = 0.05623   ## 

 

7. Closed-Loop Frequency Response 

Consider the second-order system given in Fig. 13, whose open-loop T.F. is given as: 

G(s)H(s) =
𝜔𝑛

2

𝑆(𝑆 + 2𝜁𝜔𝑛)
 

Also, the closed-loop T.F. is given as: 

𝐶(𝑠)

𝑅(𝑠)
=

𝜔𝑛
2

𝑆2 + 2𝜁𝜔𝑛𝑆 + 𝜔𝑛
2
 

 

Fig. 13, Second-order system 

To obtain the closed-loop frequency response, replace each S in the closed-loop T.F 

by jω as follows: 

𝐶(𝑗𝜔)

𝑅(𝑗𝜔)
=

𝜔𝑛
2

(𝑗𝜔)2 + 2𝜁𝜔𝑛(𝑗𝜔) + 𝜔𝑛
2

=
𝜔𝑛

2

𝜔𝑛
2 − 𝜔2 + 𝑗2𝜁𝜔𝑛𝜔

 

The magnitude [M(jω)] of the above closed-loop T.F. is: 

|𝑀(𝑗𝜔)| =
𝜔𝑛

2

√(𝜔𝑛
2 − 𝜔2)2 + 4𝜁2𝜔𝑛

2𝜔2
 

The magnitude plot obtained from the representation of M(jω) with respect to ω is 

shown in Fig. 14. 
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Fig. 14, Magnitude plot of closed-loop T.F. 

From the above figure, there is a peak value which is 20×log(Mp) in dB or Mp in 

actual scale. To obtain this peak value (Mp), we get the derivative dM(jω)/dω and 

equating it to zero as follows: 

𝑑𝑀(𝑗𝜔)

𝑑𝜔
=

−0.5𝜔𝑛
2(4𝜔3 − 4𝜔𝑛

2𝜔 + 8𝜁2𝜔𝑛
2𝜔)

(𝜔𝑛
2 − 𝜔2)2 + 4𝜁2𝜔𝑛

2𝜔2
= 0 

The frequency at which peak value is occurred is called peak frequency (ωp) 

4𝜔𝑝
3 − 4𝜔𝑛

2𝜔𝑝 + 8𝜁2𝜔𝑛
2𝜔𝑝 = 0 

𝜔𝑝(𝜔𝑝
2 + 2𝜁2𝜔𝑛

2 − 𝜔𝑛
2) = 0 

𝜔𝑝
2 =  𝜔𝑛

2(1 − 2𝜁2)         →       𝜔𝑝 = 𝜔𝑛√1 − 2𝜁2 

To get the peak magnitude Mp, substitute with the value of ωp in the equation 

 

𝑀𝑝 = |𝑀(𝑗𝜔)|𝜔=𝜔𝑝
=

𝜔𝑛
2

√(𝜔𝑛
2 − 𝜔𝑛

2(1 − 2𝜁2))
2

+ 4𝜁2𝜔𝑛
2𝜔𝑛

2(1 − 2𝜁2)

 

𝑀𝑝 =
1

2𝜁√1 − 𝜁2
 

The effect of changing damping ratio on Mp and ωp is shown in Fig. 15. 

 
Fig. 15, Peak amplitude at different damping ratios 
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The Band Width frequency (ωBW), is frequency at which the magnitude response curve 

is 3 dB down (on log scale)  (or 1/√2=0.7071 on normal scale) from its value at zero 

frequency. 

1

√2
× |𝑀(𝑗𝜔)|𝜔=0 =

1

√2
× 1 = 0.7071 =

𝜔𝑛
2

√(𝜔𝑛
2 − 𝜔𝐵𝑊

2)2 + 4𝜁2𝜔𝑛
2𝜔𝐵𝑊

2
 

𝜔𝐵𝑊 = 𝜔𝑛√1 − 2𝜁2 + √4𝜁4 − 4𝜁2 + 2 

Example (6) 

Find the closed-loop bandwidth required for 20% overshoot and 2-seconds settling 

time. 

The maximum overshoot is 0.2, and as we know it is given by: 

0.2 = 𝑒
−

𝜋 𝜁

√1− 𝜁2
     →    𝜁 = 0.45595 

The settling time (based on ±2% tolerance) is given as: 

𝑇𝑠 = 2 =  
4

𝜁 𝜔𝑛
    →    𝜔𝑛 = 4.38645 𝑟𝑎𝑑/𝑠 

 

The BW frequency is calculated from: 

𝜔𝐵𝑊 = 𝜔𝑛√1 − 2𝜁2 + √4𝜁4 − 4𝜁2 + 2 

𝜔𝐵𝑊 = 4.38645√1 − 2 × 0.20789 + √4 × 0.04322 − 4 × 0.20789 + 2 = 5.79 𝑟𝑎𝑑/𝑠 

Example (7) 

For the closed-loop T.F given below,  

𝐶(𝑠)

𝑅(𝑠)
=

5

𝑆2 + 2𝑆 + 5
 

Calculate the peak amplitude (Mp), frequency (ωp) at which Mp is occurred and the 

band width (BW) of the closed-loop frequency response. Then give a free-hand sketch 

for the closed-loop frequency response. 

Since the system is 2nd order system, we can use the equations given above. But, first 

we need to calculate ζ and ωn. By comparing the characteristic eqn. of the given 

system with the standard one: 
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𝑆2 + 2ζ𝜔𝑛𝑆 + 𝜔𝑛
2 = 0 

We obtain that: 

𝜔𝑛
2 = 5    →  𝜔𝑛 = √5 

 

2ζ𝜔𝑛 = 2      →  ζ = 1/√5 

𝜔𝑝 = 𝜔𝑛√1 − 2𝜁2 = √5√1 − 2 × 0.2 = √3 = 1.7321 

𝑀𝑝 =
1

2𝜁√1 − 𝜁2
=

1

2

√5
√1 − 0.2

=
1

0.8
= 1.25 

 

𝜔𝐵𝑊 = 𝜔𝑛√1 − 2𝜁2 + √4𝜁4 − 4𝜁2 + 2 = √5√0.8 + √1.36 = 3.1354 

 
Example (8) 

The open-loop T.F of a unity-feedback control system is 

𝐺(𝑠) =
𝐾

𝑆(𝑆 + 𝑎)
 

And the closed-loop frequency response |𝑀(𝑗𝜔)| versus ω is given in figure below. 

 
Find the value of K and a, then calculate the band width (BW) 

The closed-loop T.F. is: 

𝐶(𝑠)

𝑅(𝑠)
=

𝐾

𝑆2 + 𝑎𝑆 + 𝐾
 

By comparing the characteristic eqn. of the given system with the standard one: 

𝑆2 + 2ζ𝜔𝑛𝑆 + 𝜔𝑛
2 = 0 
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We obtain that: 

𝜔𝑛
2 = 𝐾 

2ζ𝜔𝑛 = 𝑎 

 

From the closed-loop frequency response, Mp = 1.5 and ωp = 2 rad/s 

𝑀𝑝 = 1.5 =
1

2𝜁√1 − 𝜁2
 

3𝜁√1 − 𝜁2 = 1 

9𝜁2(1 − 𝜁2) = 1 

9𝜁4 − 9𝜁2 + 1 = 0 

Let ζ2 = x, therefore, ζ = √x 

9𝑥2 − 9𝑥 + 1 = 0 

x = 0.87278,  → ζ = 0.93423 

x = 0.127322,  → ζ = 0.3568 

𝜔𝑝 = 2 = 𝜔𝑛√1 − 2𝜁2 

At ζ = 0.93423, 

𝜔𝑛 =
2

√1 − 2𝜁2
=

2

√1 − 2 × 0.87278
 𝑡ℎ𝑖𝑠 𝑔𝑖𝑣𝑒𝑠 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 

Therefore, ζ = 0.93423 is rejected. 

𝜔𝑛 =
2

√1 − 2𝜁2
=

2

√1 − 2 × 0.127322
= 2.3166 𝑟𝑎𝑑/𝑠 

 

ζ = 0.3568 and ωn = 2.3166 

𝐾 = 𝜔𝑛
2 = 5.3665 

𝑎 = 2ζ𝜔𝑛 = 2 × 0.3568 × 2.3166 = 1.6531 

 

𝜔𝐵𝑊 = 𝜔𝑛√1 − 2𝜁2 + √4𝜁4 − 4𝜁2 + 2 = 2.3166√0.745356 + √1.5556 = 3.27 𝑟𝑎𝑑/𝑠 

Example (9) 

The open-loop T.F of a unity-feedback control system is,  

𝐺(𝑠) =
60

𝑆(𝑆 + 2)(𝑆 + 6)
 

Calculate the peak amplitude (Mp), frequency at which Mp is occurred (ωp) and the 

band width (BW) of the closed-loop frequency response. 

 

The closed-loop T.F. is: 
𝐶(𝑠)

𝑅(𝑠)
=

60

𝑆(𝑆 + 2)(𝑆 + 6) + 60
=

60

𝑆3 + 8𝑆2 + 12𝑆 + 60
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This is a 3rd order system, so we can’t use the equations given as a function of ζ and ωn 
𝐶(𝑗𝜔)

𝑅(𝑗𝜔)
=

60

(𝑗𝜔)3 + 8(𝑗𝜔)2 + 12(𝑗𝜔) + 60
=

60

(60 − 8𝜔2) + 𝑗(12𝜔 − 𝜔3)
 

𝑀(𝑗𝜔) = |
𝐶(𝑗𝜔)

𝑅(𝑗𝜔)
| =

60

√(60 − 8𝜔2)2 + (12𝜔 − 𝜔3)2
 

𝑑𝑀(𝑗𝜔)

𝑑𝜔
=

−60 × 0.5(… )−0.5{256𝜔3 − 1920𝜔 + 288𝜔 + 6𝜔5 − 96𝜔3}

(60 − 8𝜔2)2 + (12𝜔 − 𝜔3)2
= 0 

256𝜔3 − 1920𝜔 + 288𝜔 + 6𝜔5 − 96𝜔3 = 0 

6𝜔5 + 160𝜔3 − 1632𝜔 = 0 

𝜔4 + 26.6667𝜔2 − 272 = 0 

Let ω2 = x, → ω = √x 

𝑥2 + 26.6667𝑥2 − 272 = 0 

x = -34.5413 (rejected) 

x = 7.874632 (accepted)    → ωp = 2.8062 

 

|
𝐶(𝑗𝜔)

𝑅(𝑗𝜔)
|

𝜔𝑝

=
60

√(60 − 8 × 7.874632)2 + 7.874632(12 − 7.874632)2
= 5.0175 

 

8. Relation Between Open-& Closed-Loop Frequency Responses (Nichole Chart) 

The Bode plot is generally constructed for an open loop transfer function of a system. 

In order to draw the Bode plot for a closed loop system, the transfer function has to be 

developed, and then factorized to its poles and zeros. This process is tedious and 

cannot be carried out without the aids of a powerful calculator or a computer. 

Nichols, developed a simple process by which the unity feedback closed-loop 

frequency response of a system can be easily deduced from the open-loop transfer 

function. This approach is outlined as follows: 

Consider a unity feedback control system given in Fig. 16. 

 

Fig. 16, Unity feedback control system 
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The closed-loop T.F. is: 

𝐶(𝑠)

𝑅(𝑠)
=

𝐺(𝑠)

1 + 𝐺(𝑠)
 

The polar plot of G(jω) in the GH plane is shown in Fig. 17. Where the vector OA 

represents the magnitude and angle of G(jω) in G-plane. 

 
Fig. 17, Polar plot for G(jω) represented in G-plane 

Assuming that the real part of G(jω) is x(ω) and the imaginary part of G(jω) is y(ω). 

Therefore, the closed-loop T.F. is expressed as: 

𝐶(𝜔)

𝑅(𝜔)
=

𝑥(𝜔) + 𝑗𝑦(𝜔)

1 + 𝑥(𝜔) + 𝑗𝑦(𝜔)
= 𝑀∠∅ 

𝑀 =
√𝑥2 + 𝑦2

√(1 + 𝑥)2 + 𝑦2
 

𝑀2 =
𝑥2 + 𝑦2

(1 + 𝑥)2 + 𝑦2
 

𝑀2(1 + 𝑥)2 + 𝑀2𝑦2 = 𝑥2 + 𝑦2 

Expanding and collecting similar terms: 

(1 − 𝑀2) 𝑥2 − 2𝑀2𝑥 − 𝑀2 + (1 − 𝑀2)𝑦2 = 0 

At M = 1; x (real part of G) = −0.5 

At M ≠ 1; the above equation is divided by (1−M2) and is rewritten as: 

𝑥2 +
2𝑀2

𝑀2 − 1
𝑥 +

𝑀2

𝑀2 − 1
+ 𝑦2 = 0 
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Completing square; 

(𝑥 +
𝑀2

𝑀2 − 1
)

2

+ 𝑦2 =
𝑀2

𝑀2 − 1
 

This is an equation of a circle with radius 

𝑀

𝑀2 − 1
 

And its center at 

𝑥 = −
𝑀2

𝑀2 − 1
, 𝑦 = 0 

The representation of the circle equation given above at different values of M is given 

in Fig. 18. Thus, if the polar frequency response of an open-loop function, G(s), is 

plotted and superimposed on top of the constant M circles, the closed-loop magnitude 

frequency response is determined by each intersection of this polar plot with the 

constant M circles. 

 
Fig. 18, Constant M circles 

 

The phase angle of the closed-loop T.F is given by: 

∅ = 𝑡𝑎𝑛−1
𝑦

𝑥
− 𝑡𝑎𝑛−1

𝑦

𝑥 + 1
 



 

Electrical Engineering Department 
Dr. Ahmed Mustafa Hussein 

 

Benha University 
Faculty of Engineering at Shubra 

 

31 Chapter Twelve: Bode Plots                                                                 Dr. Ahmed Mustafa Hussein 
 

Taking tan for both sides: 

tan(∅) = 𝑁 =

𝑦
𝑥

−
𝑦

𝑥 + 1

1 +
𝑦
𝑥

.
𝑦

𝑥 + 1

=
𝑦(𝑥 + 1) − 𝑦(𝑥)

𝑥(𝑥 + 1) + 𝑦2
=

𝑦

𝑥2 + 𝑥 + 𝑦2
 

𝑥2 + 𝑥 + 𝑦2 −
1

𝑁
𝑦 = 0 

Completing squares: 

(𝑥 +
1

2
)

2

+ (𝑦 −
1

2𝑁
)

2

= (
1

2
)

2

+ (
1

2𝑁
)

2

 

This is an equation of a circle with radius 

√(
1

2
)

2

+ (
1

2𝑁
)

2

 

And its center at 

𝑥 =
1

2
,    𝑦 =

1

2𝑁
 

The representation of the circle equation given above at different values of N is given 

in Fig. 19. Superimposing a unity feedback, open-loop frequency response over the 

constant N circles yields the closed-loop phase response of the system. 

Both M and N circles are represented in one figure to get the magnitude and angle 

easily as shown in Fig. 20. The main disadvantage of using the M and N circles is that 

changes of gain in the open-loop transfer function, G(s), cannot be handled easily. For 

example, in the Bode plot, a gain change is handled by moving the Bode magnitude 

curve up or down an amount equal to the gain change in dB scale. Since the M and N 

circles are not dB plots, changes in gain require each point of G(jω) to be multiplied in 

length by the increase or decrease in gain. 

Another presentation of the M and N circles, called a Nichols chart, displays the 

constant M circles in dB, so that changes in gain are as simple to handle as in the Bode 

plot. A Nichols chart is shown in Fig. 21. 
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Fig. 19, Constant N circles 

 
Fig. 20, Constant M and N circles 
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Fig. 21, Nichole Chart 
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Sheet 10 (Bode Plots) 

(1) For the following transfer functions, sketch the Bode plots: 
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(2) For each of the following transfer functions, sketch the Bode diagram and 

determine the gain crossover frequency (that is, the frequency at which the 

magnitude of G(j)=20 log G(j)= 0 dB, and the phase crossover frequency 

(that is, the frequency at which the phase angle of G(j)=-180:  
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(3) Consider the non-unity feedback system in Figure (1), where the controller 

gain is K=2. Sketch the Bode plot of the open loop transfer function. Determine 

the phase angle of the open loop transfer function when the magnitude equals 

to 0 dB. 

 
Figure (1) Non-unity feedback system with controller gain K 

(4) Consider the system given in Figure (2) where  
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• 
)10(

)5(
)(

+

+
=

s

sK
sGc  

• 
)22(

1
)(

2 ++
=

sss
sGp  

• 1)( =sH  

(a) Find K such that the velocity error coefficient Kv=10 
(b) Draw the Bode plot of the open-loop system 
(c) From the Bode plot, find the frequency corresponding to 0 dB gain 

(d) From the Bode plot, find the frequency corresponding to -180 phase 

 

Figure (2) A closed-loop control system 

(5) The asymptotic log-magnitude curves for two transfer functions are given in 

Figure (3). Sketch the corresponding asymptotic phase angle curves for each system. 

Determine the transfer function for each system.  

 

Figure (3) Log-magnitude curves 

(6) A position control system may be constructed by  using an AC motor and AC 

components, as shown in Figure (4-a). To measure the open-loop  frequency 

response, we simply disconnect X from Y and X' from Y' and then apply a sinusoidal 

modulation signal generator to the Y - Y' terminals and measure the response at X - 

X'. The resulting frequency response of the loop transfer function L(j)= 

Gc(j)G(j)H(j), is shown in Figure (4-b). Determine the transfer function L(j).  
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Figure (4) (a) AC motor control, (b) Frequency response 

(7) A helicopter with a load on the end of a cable is shown in Figure (5-a). The 

position control system is shown in Figure (5-b), where the visual feedback is 

represented by H(s). Sketch the Bode diagram of G(j)H(j). 

 

Figure (5)  A helicopter feedback control system 
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(8) Sketch Bode plot of a system with transfer function 

)22)(21(

)1.01(
)(

2 +++

+
=

ssss

sK
sG  

(a) K=10 
(b) K=20 
(c) Compare plots obtained in (a) and (b) 

(9) A system has the loop transfer function  

)49/7/1)(21(

)5/1(5.2
)(

2ssss

s
sG

+++

+
=  

Plot the Bode diagram. Show that the phase margin is approximately 28 and that the 

gain margin is approximately 21 dB. 

(10) Consider a unity feedback system with the loop transfer function 

)04.024.01)(21(

)4.01(10
)()(

2ssss

s
sHsG

+++

+
=  

(a) Plot the Bode diagram, 

(b) Find the gain margin and phase margin. 

(11) The experimental Oblique Wing Aircraft (OWA) has a wing that pivots, as shown 

in Figure (6). The wing is in the normal unskewed position for low speeds and can 

move to a skewed position for improved supersonic flight. The aircraft control system 

loop transfer function is 

])8/()20/(1)[21(
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2ssss
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+++
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Figure (6) The Oblique Wing Aircraft, top and side  
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(a) Sketch the Bode diagram when K=4, 

(b) Find the gain margin and phase margin, 

(c) Find the value of K for critical stable system. 

(12) Consider a unity feedback system with the following open-loop transfer 
function: 

)2)(1(
)(

++
=

sss

K
sG  

(a) For K=4, show that the gain margin is 3.5 dB, 
(b) If we wish to achieve a gain margin equal to 16 dB, determine the value of the 

gain K. 
 

(13) A closed-loop system, as shown in Figure (7) has H(s)=1 and 

)02.01)(02.01(
)()(

sss

K
sGsG c

++
=  

 
Figure (7) Feedback control system  

(a) Select a gain K so that the steady-state error for a ramp input is 10% of the 
magnitude of the ramp function A, where r(t) = At, t> 0, 

(b) Plot the Bode plot of Gc(s)G(s), and determine the phase and gain margins. 
 

(14) An electric carrier that automatically follows a tape track laid out on a factory 

floor. Closed-loop feedback systems are used to control the guidance and speed of 

the vehicle. The block diagram of the steering system is shown in Figure (8). Select a 

gain K so that the phase margin is approximately 30° . 

 

Figure (8) Feedback steering control system  
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(15) Consider the system shown in Figure (9).  

 

Figure (9) Feedback control system  

(a) Draw a Bode diagram of the open-loop transfer function, 

(b) Determine the value of the gain K such that the phase margin is 50 , 
(c) What is the gain margin of this system with this gain K? 
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