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Abstract: This paper proposes a novel Artificial Intelligence technique known as Ant 
Colony Optimization (ACO) for optimal tuning of PID controllers for load frequency 
control. The design algorithm is applied to a hydrothermal power system consisting of 
two control areas one hydro and the other is thermal with reheat stage. To make the 
system in realistic form, the system nonlinearities represented by Generation Rate 
Constraint (GRC), Dead Band, wide range of parameters are introduced. Three different 
cost functions have been suggested for tuning the PID controllers. The system has been 
tested for various load changes to reveal the effectiveness and robustness of the 
proposed technique. 
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1. Introduction 
 In the large scale electric power systems with interconnected areas, Load Frequency 
Control (LFC) plays an important role. The LFC is aimed to maintain the system frequency of 
each area and the inter-area tie line power within tolerable limits to deal with the fluctuation of 
load demands and system disturbances. These important functions are delegated to LFC due to 
the fact that a well-designed power system should keep voltage and frequency in scheduled 
range while providing an acceptable level of power quality. A wide variety of different 
advanced control methods have already been proposed in the literature for LFC [1]. Usually 
LFC is organized in three levels:  
Primary control is done by governors of the generators, which provide immediate action to 
sudden change of load.  
Secondary control keeps frequency at its nominal value by adjusting the output of selected 
generators (controller is needed).  
 Tertiary control is an economic dispatch that is used to operate the system as economically 
as possible [2]. During the last years several researches and techniques had been applied to the 
field of LFC. A robust LFC via H∞ and H2 control theories has been designed in [3] with 
different cases for the norm between load disturbance and frequency deviation output. The 
main disadvantage of these two methods is that these introduce a controller with the same plant 
order, which in turn doubles the order of the open loop system, and makes the process very 
complex specially for large scale interconnected power systems. In [4] another technique had 
been suggested for tuning the parameters of a PID controller for LFC in a single area power 
system by using particle swarm optimization (PSO). Genetic Algorithm (GA) [5] also used 
inthis field for the purpose of selection of PID parameters.  In [6] LFC with fuzzy logic 
controller (FLC) considering nonlinearities and boiler dynamics is introduced which has 
greatly improved the performance of the controller. In [1] new approach using Imperialist 
Competitive Algorithm (ICA) for multi area LFC has been introduced. Another method for 
tuning PID controller using Bacteria Foraging Optimization (BFO) for two area system with 
different step load changes has been applied in [7]. 
 This paper introduces a new Artificial Intelligence (AI) technique (ACO) for optimal tuning 
of  PID  controllers. The  motivation  behind  this  research  is  to  prove  and  demonstrate  the 
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robustness of ACO based PID, and to improve the transient response of both frequency 
deviation and tie line power under various loading conditions in presence of system 
nonlinearities. The paper is organized as follows: Section I, introduction. Section II, focuses on 
the modeling of two area power system. A brief description for ACO technique is illustrated in 
Section III. In Section IV, simulation and results obtained from the application of ACO tuned 
PID to the system. Sections V, conclusion. 
 
2. Two area power system 
A. System Model 
 A two area model of a hydrothermal power station including nonlinearities is shown in 
figure (1). Complete description for symbols used in the block diagram is given in table (I). 
 

 
Figure 1.  Block diagram of two area model. 

 
Table 2. Symbols identification 

Value Quantity Symbol 

0.6, 5, 32 s respectively Governor Time constants of hydro area T1,T2,T3 

1 s Hydro turbine time constant Tw 
20 HZ/Pu MW, 3.76 s 

respectively Hydro plant gain and time constant K1,Tp1 

3 Hz/Pu MW Regulation of hydro area R1 
0.383 Pu MW/ Hz Biasing factor of hydro area B1 

0.08 s Governor Time constant of thermal area Tg 
10 s Reheat time constant Tr 
0.5 P.u  megawatt rating of high pressure stage Kr 

0.3 s thermal turbine time constant Tt 
120 HZ/PuMW, 20 s respectively thermal plant gain and time constant K2, Tp2 

2.4 Hz/PuMW Regulation of hydro area R2 
0.425 PuMW/ Hz Biasing factor of hydro area B2 

0.545PuMW Synchronization coefficient P12 
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 The steam chest time constant which is related to the non-reheat stage ranges from 0.1 to 
0.5 s whereas the time constant for the reheat stage (which is series cascaded with the non-
reheat stage) ranges from 4 to10 s. Nonlinearities incorporated in this model represent in GRC 
and governor dead band (backlash). The first one as its name implies (GRC) respects for the 
turbine illustrates the limitation on the generation rate of change in the output generated power 
due to the limitation of thermal and mechanical movements [8], for thermal stations it is taken 
to be 0.1 Pu Mw per minute [9]. The second nonlinearity is defined as the total magnitude of a 
sustained speed change; within which there is no resulting change in valve position.  All types 
of governors have a dead band in response, which is important for power system frequency 
control in the presence of disturbances, here it is taken to be .0005 [9]. 
 
B. Control Technique 
 The controller type used here is a PID controller with the transfer function given in (1): 
 

 
sdksikpksk ++= /)(  (1) 

 
Where kp, ki, kd are proportional, integral and differential gains respectively. The input to the 
controller is the area control error (ACE), and the output is u(s) as shown in (2).   
 

 ACEsksu *)()( −=  (2) 
 
 The function of each part of a PID controller can be described as follows, the proportional 
part reduces the error responses of the system to disturbances, the integral part eliminates the 
steady-state error, and finally the derivative part dampens the dynamic response and improves 
the system stability [10].  
 
C. Cost Function 
 Three different cost functions had been suggested for ACO technique for tuning the 
parameters of the PID controller. 
 
First cost function:  
This cost function as shown in (3) minimizes the integrated square error e(t). 
 

 

∫
∞

=
0

2))((1 dttef  (3) 

 
Second cost function: 
In this method [11], the actual closed-loop specification of the system with controller, rise time 
(tr), maximum overshoot (Mp), settling time (ts), and steady state error (ess) are used to evaluate 
the cost function. This is done by summing the errors between actual and specified 
specification as given by (4). 
 

 
)](4)(3)(2)(1[
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2
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=  (4) 

 
 Where, c1: c4 are positive constants (weighting factors), their values are chosen according to 
prioritizing their importance, (trd) is the desired rise time, (Mpd) is the desired maximum 
overshoot, (tsd) is the desired settling time, and (essd) is the desired steady state error. 
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takes for an ant to travel down the path and back again, the more time the pheromones have to 
evaporate. A short path, by comparison, gets marched over more frequently, and thus the 
pheromone density becomes higher on shorter paths than longer ones [9]. Figure (1) [10] 
illustrates the behavior of real ants in searching the source of food. 
 

A flowchart for this optimization process is shown in figure 2. 

 
 

Figure 3.  Flowchart of ACO based PID control system. 
 
 The algorithm of ACO is shown in (6) and (7),  
where: P is the probability, α, β, τ are parameters related to ACO algorithm, d is the distance, 
Q being a constant parameter,  Lk is the kth ant solution, ρ is a parameter used to avoid 
unlimited accumulation of the pheromone trails and m is the number of ants. 
 The first equation describes the probability of the ant to move between the two nodes i and 
j, while the second one describes the local updating of pheromone after travelling from a node 
to another one. 
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Advantages of ACO technique represent in: 
• Positive Feedback accounts for rapid discovery of good solutions 
• Distributed computation avoids premature convergence. 
• The greedy heuristic helps finding acceptable solution in the early solution in the early 

stages of the search process. 
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Disadvantages of ACO on the other hand represent in: 
• Lower convergence than other Heuristics. 
• Performs poorly for problems have larger than 75 nodes. 
• No centralized processor to guide the ACO towards good solutions [11]. 
 
 In this paper ACO algorithm is used for optimal tuning of PID parameters for both the two 
areas at the same time by minimizing the required cost function. 
 
4. Simulation and results 
 In this section the different values of PID parameters tuned using ACO technique for the 
early mentioned three cost functions are shown in table (II), where area 1 is the hydro power 
station, and the steam power station is the second one. 
 

Table 2. Values of PID gains 

 
Hydro plant Steam plant 

Kp Ki Kd Kp Ki Kd 
1st cost function .84 .86 .66 .9 .98 .98 
2nd cost function .02 .4 .42 .4 .15 .88 
3rd cost function .81 .42 .33 .56 .21 .27 

 
 Different cases of load disturbances are applied to the model to demonstrate effectiveness 
and robustness of the proposed technique. 
 
Case 1: steploadchange of 2%in both areashas been applied to the system. The responses of 
frequency deviation in area 1, tie line power, and control signals for the two areas in this case 
are shown in figure (4, 5, 6, and 7). From these responses it is clear that ACO tuned PID for the 
three cost functions succeeded in damping all oscillations, minimizing settling time and 
reducing overshoot. It is clear that the control signals in the two areas are in acceptable values. 
Also it is clear that the 3rd cost function based PID has the best performance. 
 
 

 
 

Figure 4.  Frequency deviation response in area 1 for case 1. 
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Figure 5. Tie line power deviation response for case 1. 

 
 

 
Figure 6. Control signal in area 1 for case 1. 

 
 

 
Figure 7. Control signal in area 2 for case 1. 
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Case 2: another violent test by changing the load disturbance nature from step to ramp shape is 
discussed in this case. This case is considered a simulation for realistic load change case where 
the load disturbances as shown in figure (8,9) simulate what happens in fact. For realistic 
power system load disturbance takes place in ramp shape within certain time not in no time as 
in step case. The responses of frequency deviation in area 1, tie line power, and control signals 
for the two areas in this case are shown in figure (10, 11, 12, and 13). The results proved the 
robustness of the propoed algorithm. 
 
 

 
 

Figure 8. Load disturbance in area 1 for case 2. 
 
 
 

 
 

Figure 9. Load disturbance in area 2 for case 2. 
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Figure 10. Frequency deviation response in area 1 for case 2. 

 
 

 
Figure 11. Tie line power deviation response for case no 2. 

 
 
 

 
Figure 12. Control signal in area 1  for case 2. 
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Figure 13. Control signal in area 2 for case 1. 

 
Case 3: the load disturbances are -2% in both areas with 50% increasing in K2, Tp2, R2, K1, 
Tp1, and R1. The responses of frequency deviation in area 1, tie line power, and control signals 
for the two areas in this case are shown in figure (14, 15, 16, and 17). It is clear that ACO 
based PID still robust to variation in system parameters. 
 

 
Figure 14. Frequency deviation response in area 1 for case 3. 

 

 
Figure 15. Tie line power deviation response for case 3. 
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Figure 16. Control signal in area 1  for case 3. 

 

 
Figure 17. Control signal in area 2 for case 3. 

 
 
 The settling time (ts) and percentage overshoot (%o.s) for ∆f1 and ptie for the above cases 
are given in table (III). 
 
 

Table 3. 
 Case 1 Case 2 Case 3 

∆f1 ptie ∆f1 ptie ∆f1 ptie 

ts %o.s ts %o.s ts %o.s ts %o.s ts %o.s ts %o.s 
1st cost 

function 20 12.6 40 1.6 46 5.35 60 1.15 30 13.2 40 1.75 

2nd cost 
function 50 11.9 60 1.6 60 5.14 70 .07 47 12.5 60 1.58 

3rd cost 
function 32 12.7 64 1.67 64 5.87 70 .09 42 13.3 63 1.7 
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Conclusion 
 In this paper a PID controller which is tuned via ACO has been strongly proposed for the 
multi area LFC problem. The results declared that ACO based PID is capable to guarantee 
robust stability and robust performance under various load conditions and changes in system 
parameters for three different cost functions. The proposed controllers succeeded in damping 
all oscillations, minimizing settling time and reducing overshoot, this reduces wear in control 
valves and gates. In the future work we intend to apply the ACO algorithm to the renewable 
energy power stations as wind turbine for example; also we intend to specify the upper limit of 
load disturbances which may cause the instability problem of the power system.    
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