
ORIGINAL RESEARCH PAPER

Speeding up spatiotemporal feature extraction using GPU

Ahmed Mehrez1 • Ahmed A. Morgan2,3 • Elsayed E. Hemayed2

Received: 19 July 2017 / Accepted: 16 January 2018
� Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Spatiotemporal feature extraction algorithms are widely used in many image processing and computer vision applications.

They are favored because of their robust generated features. However, they have high computational complexity. Paral-

lelizing these algorithms, in order to speed their execution up, is of great importance. In this paper, we propose new parallel

implementations, using GPU computing, for the two most widely used spatiotemporal feature extraction algorithms: scale-

invariant feature transform and speeded up robust features. In our implementations, we solve problems with previous

parallel implementations, such as load imbalance, thread synchronization, and the use of atomic operations. Our imple-

mentations speed up the execution by simultaneously processing all the work of each stage of the two algorithms, without

dividing that stage into smaller sequential ones. The allocation of the threads in our implementations further allows them to

increase the occupancy of the GPU streaming multiprocessors (SMs). We compare our presented implementations to

previous CPU and GPU parallel implementations of the two algorithms. Results show that the proposed implementations

could do all the processing in real time with high accuracy. They further achieve higher speedup, frame rate, and SM

occupancy than the previous best-known parallel implementations of the two algorithms.

Keywords CUDA � Graphics processing unit (GPU) � Image matching � Scale-invariant feature transform (SIFT) �
Speeded up robust features (SURF)

1 Introduction

The robust representation of image features is fundamental

to most machine vision and image registration applications.

Local approaches, which do not require image segmenta-

tion, are proved to be robust to changes that may occur in

images, such as the change in the illumination and the view

angle [1]. According to the changes in the image

environment, local feature extraction approaches should

overcome two main challenges. The first challenge is how

to locate regions of the image that have different features

and how to detect these features. The second challenge is

how to describe the detected features in a unique way,

which could be used to find a match with similar features in

other images. Spatiotemporal features are shown to repre-

sent robust ones against the many variations in the image

environment [2]. Accordingly, they become widely used in

most image processing and computer vision applications.

Scale-invariant feature transform (SIFT) [1] and spee-

ded up robust features (SURF) [3] are among the most

robust spatiotemporal local feature extraction algorithms

that are used in many computer vision techniques. For

example, they are used in object recognition and tracking,

image classification, face authentication, and video event

classification. They could overcome illumination, scale,

and rotation variations. SIFT and SURF extract features in

the form of interest points, which represent special points

in the image that could be used in image matching. A

feature vector is created for each point, which describes the

gradients in the region around that point.

& Ahmed Mehrez

ahmed.mehrez@feng.bu.edu.eg

Ahmed A. Morgan

ahmorgan@eng.cu.edu.eg; aamorgan@uqu.edu.sa

Elsayed E. Hemayed

hemayed@ieee.org

1 Department of Electrical Engineering, Faculty of Engineering

at Shoubra, Benha University, Cairo 11614, Egypt

2 Department of Computer Engineering, Faculty of

Engineering, Cairo University, Giza 12613, Egypt

3 College of Computers and Information Systems, Umm Al-

Qura University, Makkah, Saudi Arabia

123

Journal of Real-Time Image Processing
https://doi.org/10.1007/s11554-018-0755-2(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-018-0755-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-018-0755-2&domain=pdf
https://doi.org/10.1007/s11554-018-0755-2

The SIFT algorithm uses Gaussian filters with increas-

ing r. As the filter size increases, the required computa-

tions and the execution time of the algorithm increase as

well. This long computational time prevents the sequential

implementation of the SIFT algorithm from being used in

real-time applications. Alternatively, in order to use the

SIFT algorithm in these real-time applications, some

implementations use smaller Gaussian filters [4]. This

unfortunately results in poor-quality interest points. On the

other hand, the SURF algorithm is proposed to overcome

the computational time problem of SIFT. The feature

detection of the SURF algorithm is based on Hessian

matrix and box filters approximation. Therefore, the SURF

algorithm has fixed computational time throughout all

points. In turn, the computation time of the SURF algo-

rithm allows it to detect and describe interest points faster

than SIFT. However, its sequential implementation is still

far from being efficiently used in real-time applications.

In order to enable the use of SIFT and SURF algorithms

in real-time applications, many parallel implementations of

the two algorithms are presented using different hardware

architectures [5–9]. These implementations, which are

surveyed in Sect. 3, managed to provide a good speedup

with respect to sequential implementations of the two

algorithms. Nevertheless, they still have some problems

that should be handled, in order to better enhance the

performance of the two algorithms. First, most of previous

parallel implementations suffer from a load imbalance

problem. In each stage of the two algorithms, the compu-

tations are distributed in an imbalanced fashion over the

processing elements (PEs) of the employed hardware

architecture. Consequently, the heavily loaded PEs would

need more time to finish its work than the less loaded ones.

Indeed, a more balanced distribution of the work would

result in a higher speedup. Second, most of the previous

parallel implementations suffer from a thread synchro-

nization problem. Computations of different stages of the

two algorithms are split into smaller segments, which could

be processed in parallel. However, each segment has to

wait until the previous one finishes. With the aforemen-

tioned load imbalance problem, many PEs are left idle and

the hardware occupancy deteriorates. This, in turn, pre-

vents previous parallel implementations from achieving the

maximum possible speedup. Finally, previous parallel

implementations store interest points in a sequential man-

ner, which depress the overall speedup that could be

achieved by the parallel implementation. In this paper, we

present a new parallel implementation that targets these

problems. In other words, our implementation better han-

dles the load imbalance and the synchronization between

threads. It also increases the GPU occupancy and stores the

detected interest points in a more efficient parallel manner.

Graphics processing units (GPUs) are mainly used for

graphics. In this paper, we target NVIDIA GPUs, and hence,

we would employ its terminology. A GPU consists of tens or

hundreds of scalar processors (SPs) that are grouped to form

streaming multiprocessors (SMs). Therefore, GPUs are

cheap platforms that could result in a significant performance

enhancement, if their parallelism is properly exploited.

NVIDIA further develops CUDA, as a parallel computing

platform, to facilitate the programming of their GPUs. This

motivates many researchers to employ GPUs in speeding up

general-purpose applications [10]. Interested readers would

find dozens of such research work in [11].

The enormous embedded parallelism and the ease of

programming encourage some researchers to speed up

SIFT and SURF algorithms by using GPUs. Generally, in

order to get the maximum performance from a GPU, its

occupancy should be maximized. In other words, the

number of threads at any time during the execution should

be maximized. This maximization is indeed constrained by

the GPU available resources, like registers and shared

memory. However, previous GPU parallel implementations

of SIFT and SURF suffer from the same problems that we

mentioned in our previous paragraph. This, in turn, pre-

vents them from reaching the maximum number of threads

and an attainable speedup is therefore lost. In this paper, we

seek this attainable speedup by better increasing the GPU

occupancy. To this end, our contributions are two fold.

(a) Presenting a new GPU parallel implementations of

both SIFT and SURF algorithms. Our implementation

increases the GPU occupancy by minimizing load

imbalance, thread synchronization, and sequential

execution throughout all stages of the two algorithms.

(b) Evaluating the presented solution by comparing it to

the sequential and the best-known parallel imple-

mentations of the two algorithms. Four GPUs and

images of different resolutions and qualities are used

to accurately validate the efficiency of the presented

solution.

The rest of this paper is organized as follows: Sect. 2

explains the sequential implementation and the main stages

of both SIFT and SURF spatiotemporal algorithms. Sec-

tion 3 surveys the related work and discusses previous

parallel implementations of the two algorithms. Section 4

introduces modern GPUs architecture with its basic con-

cepts and terminology. Section 5 presents our methodology

for parallelizing the two algorithms and details our

implementation in different stages of the algorithms. Sec-

tion 6 gives our experimental results and validates our

implementation by comparing it to sequential and other

related parallel algorithms. Finally, Sect. 7 concludes our

work and gives directions for possible future work.

Journal of Real-Time Image Processing

123

2 Interest point feature extraction
algorithms

In this section, interest point extraction algorithms are

discussed. In any image, edges and corners are the most

likely locations where interest points may be found.

Therefore, the first step in interest point detection is to

identify edges and corners in a given image. Accordingly,

interest points extraction algorithms could be simply con-

sidered as edge or corner detectors.

2.1 SIFT algorithm

The SIFT algorithm consists of four stages: scale space

construction, interest point detection, orientation assign-

ment, and interest point description. The first two stages are

responsible for interest point localization, whereas the

other two stages build the feature vector for the detected

interest points, based on local gradients around these

points.

Stage 1 scale space construction

This stage first constructs all scales in which interest

points could be found. Scales are formed by convolving

the original image by a Gaussian filter with increasing

sigma (r). Scale space consists of a number of octaves

and each octave consists of a number of scales. The first

octave is formed by convolving the original image.

Thereafter, each subsequent octave uses downsampled

images from its predecessor. Finally, the difference of

Gaussians (DOG) is calculated. As shown in Fig. 1, the

difference between each two consecutive layers, in each

octave, constitutes one layer in the DOG.

Stage 2 interest points detection

In this stage, all points, in the DOG, are compared to

their neighbors to detect whether they are local maxima

or not. As shown in Fig. 2, any point is only considered

an interest point if it is a local maximum among its 26

neighbors. Thereafter, points are interpolated to sub-

pixel accuracy. Points with low contrast are removed,

and their responses at edges are eliminated. This method

is developed by Brown and Lowe in [12] and is further

used by D. Lowe in [1]. The extremum, x̂, which

represents the local maxima, is first calculated according

to (1).

x̂ ¼ � d2D�1

dx2
dD

dx
; ð1Þ

where D is the scale space function shifted to the sample

point. D and its derivatives are calculated at the arbitrary

sample point (x, y).

The approximation of the derivatives, D x̂ð Þ, is then

calculated using the difference of neighbors. According

to (2), low-contrast points are removed [1]. A threshold

of 0.03 is used to detect whether any point is of low

contrast or not.

D x̂ð Þ ¼ Dþ 1

2

dDt

dx
x̂; ð2Þ

where D is again the scale space function shifted to the

sample point, Dt is the function calculated at the offset

from this point, and x̂ is the extremum, as calculated in

(1).

Stage 3 orientation assignment

After detecting interest points in all scales, the SIFT

algorithm tries to detect the orientation of these points,

based on the neighbors’ gradient in the circular region

around them. An orientation histogram is created for

each point with 36 pins. These pins represent the 360� in
the circular region. Gradients of neighbors are then

added to the orientation histogram, after being weighted

with a Gaussian weighted window of width 6r, where
r = 1.5 9 the scale of the point. Thereafter, the

Fig. 1 Construction of difference of Gaussians (DOG) images

Fig. 2 Point comparisons to detect maxima of the DOG (gray dots

represent the 26 neighbors of point x)

Journal of Real-Time Image Processing

123

orientation histogram is checked for the pin with the

maximum value. This pin represents the dominant

direction of the interest point. Therefore, it is assigned

as its orientation. Finally, Lowe states that if another pin

has a value that is more than 80% of the dominant one, it

could be saved as a new interest point, with the same

scale and location, but different orientation [1].

Stage 4 descriptor construction

In this final stage, the SIFT algorithm builds the feature

vector. The feature vector describes the detected interest

points, and hence, it is also called the descriptor vector.

By comparing each interest point to its neighbors, this

vector actually shows the intensity distribution around

this point. For each interest point, a descriptor window

of size 16 9 16 is formed, as shown in Fig. 3. This

window is rotated to the point orientation. Gradients of

other points around the interest point are then calculated.

These gradients are shown as arrows in the small squares

to the left of Fig. 3. Gradients are weighted with a

Gaussian kernel with r = 1.5 9 the scale of the point.

Thereafter, the descriptor window is divided into 4 9 4

subregions, which consist of 4 9 4 points. As shown to

the right of Fig. 3, each region creates a histogram of 8

pins to sum the weighted gradients of its points.

Accordingly, 4 9 4 subregions, with 8 pins each, result

in a 128-pin descriptor vector.

2.2 SURF algorithm

The SURF algorithm consists of five main stages. In the

first stage, the integral image is computed from the original

image. In the second stage, the scale space is constructed

by applying an increasing size filter. In the third stage,

interest points are detected. In the fourth stage, the orien-

tation of these interest points is found. Finally, in the fifth

stage, the interest points are described. The following

subsections discuss these stages in more detail.

Stage 1 integral image computation

SURF uses integral images to speed up the filters

calculation. The integral image is an image whose points

save the sum of its value and the values of all its upper

left points. Accordingly, the value of each point could be

calculated according to (3).

I x; yð Þ ¼
X

y0 � y

x0 � x

i x0; y0ð Þ; ð3Þ

where I is an arbitrary point, located at (x, y), and

i represents points to its upper left, such that x’ and y’ are

less than or equal to x0 and y0, respectively. By having

each point accumulating the values of its upper left

points, the summation of any rectangular area of the

integral image could then be calculated by manipulating

values of only four points. These are the points located at

the corners of this rectangular area. Therefore, integral

images reduce the number of computations required to

manipulate any portion of the image to only four [3]. On

the other hand, SURF uses Haar response, which is a

discrete representation of the wavelet changes in the

image [13]. Haar response and gradients of the image are

consequently calculated using box filter approximations.

Box filter approximations represent the second-order

Gaussian derivatives, Dxx, Dyy, and Dxy, in x-, y-, and xy-

directions, respectively. These approximations depend

on the weighted sum of image portions, which could

easily be calculated using integral images. Figure 4

shows an example of a 9 9 9 box filter. Approximations

of second-order Gaussian derivatives, Dxx, Dyy, and Dxy,

are shown in sub-figures (a), (b), and (c), respectively.

For example, in sub-figure (a), the filter neglects upper

Fig. 3 Descriptor construction in the SIFT algorithm

Journal of Real-Time Image Processing

123

and lower 2 pixels. The summation of middle pixels,

which are colored blue, is weighted by - 2. The sum-

mation of other pixels, which is colored white, is

weighted by 1. The final value is the summation of all

weighted sums.

Stage 2 scale space construction

As in the SIFT algorithm, the scale space is constructed

at many octaves and scales. However, to generate new

scales, SURF uses box filters with an increasing size,

instead of changing the image size in each octave. Filter

sizes increase both within and across octaves. This

finally forms a stack of scales in the image pyramid. As

shown in Fig. 5, the filter size increases from 9 9 9, in

the first scale of the first octave, to 99 9 99, in the last

scale of the third octave [3].

As mentioned in the previous subsection, box filter

approximations result in the second-order Gaussian

derivatives in x-, y-, and xy-directions. Accordingly,

for any arbitrary point, P, located at (x, y), the Hessian

matrix for point P at scale r, H (P, r), could be defined

according to (4).

H ¼ Dxx Dxy

Dxy Dyy

� �
; ð4Þ

where Dxx, Dyy, and Dxy represent the second-order

Gaussian derivatives in the x-, y-, and xy-directions,

respectively. Consequently, for all the scales in the

image pyramid, the determinant of Hessians, Det(H), is

computed for all the points in the input image according

to (5) [3]. Finally, computed determinants are stored in

the form of a pyramid, which is called the response

pyramid array.

Det Hð Þ ¼ DxxDyy � ð0:9 � DxyÞ2: ð5Þ

Stage 3 interest points detection

SURF uses two steps to detect and localize interest

points. In the first step, weak points, which have no

significant effect on the matching process, are excluded.

Points are compared with a threshold that is assigned by

the algorithm designer. Those points with greater values

are only passed and considered as candidate interest

points. Generally, the higher the threshold value, the

higher the quality of passed points. In the second step,

the location and the scale of these interest points are

found. As in the SIFT algorithm, non-maxima suppres-

sion is then applied. Each point is compared to its

3 9 3 9 3 neighbors to check if it is a local maximum,

and hence, an accepted interest point, or not.

Stage 4 orientation assignment

In order to have rotation-invariant points, descriptors

should be directed to the points’ orientation. Therefore,

for each point, the dominant orientation is calculated

using Haar response filters. Haar wavelet filters are

applied onto the neighbors of the point in a circle of

radius = 6 9 the scale of the point. In more detail, for

each neighbor point, Haar wavelet filters, of

size = 4 9 the scale of the point, are applied and then

weighted with a Gaussian filter to form X–Y responses

[3]. To detect the dominant orientation, these responses

are summed using a sliding orientation window of size

Fig. 4 Weighted box filter approximations, for a 9 9 9 filter

Fig. 5 Increasing the filter size in the SURF algorithm

Journal of Real-Time Image Processing

123

p/3 and a step of 0.15. This results in 42 vectors. The

dominant vector is finally assigned as the point

orientation.

Stage 5 descriptor construction

In the SURF algorithm, the descriptor works within a

window of size 20 9 20. The origin of the window is at

the location of the interest point. The window is also

rotated to the interest point orientation. As shown in

Fig. 6, each window is further divided into 4 9 4

subregions, which consist of 5 9 5 points each. Haar

responses are then calculated, weighted, and summed up.

For each subregion, four summations are generatedP
dx,

P
dy,

P
|dx|, and

P
|dy|, which represent summa-

tions of responses in x-direction, responses in y-direc-

tion, absolute response values in x-direction, and

absolute response values in y-direction, respectively.

Finally, 4 9 4 subregions, with four summations each,

result in a descriptor vector of 64 features.

3 Related work

In this section, previous parallel implementations of SIFT

and SURF algorithms are discussed. In our survey, we

consider previous work that enhances the runtime of the

two algorithms by using the parallel capabilities of both

GPU and CPU.

3.1 SIFT parallel implementations

S. Heymann et al. presented a parallel implementation of

the SIFT algorithm using GPUs, in [14]. Authors grouped

every 4 pixels in the grayscale to form one RGBA pixel.

Their work depended on two main GPU capabilities, the

dynamic branching and the multiple render targets (MRTs).

For frames of 640 9 480 resolution, their implementation

could process up to 17 frames per second. Authors

achieved a good speedup, but with very low quality interest

points because of grouping 4 pixels in one RGBA pixel.

So, detection of DOG extrema was not handled efficiently.

Sinha et al. [15, 16] also proposed one of the first GPU-

based implementations of SIFT, in a series of publications.

Precisely, authors used the GPU for the scale space con-

struction and the interest point detection stages of the

algorithm. However, the orientation assignment and parts

of the descriptor construction stages were computed using

the CPU. The reported speedup was 89 to 109, with

respect to the sequential algorithm that was completely run

on the CPU.

Wu presented a parallel implementation, which is called

SIFTPP, of the improved SIFT, in [17]. It was an enhanced

version of SIFT?? sequential implementation by Vedaldi

[18]. The author used CPU and GPU together to detect

interest points and then sent them back to GPU to find the

orientation and build descriptors of these points. Commu-

nication overhead between CPU and GPU to work together

reduced the gained speedup.

In [19], Zhou et al. implemented the SIFT algorithm

using CUDA. They named their implementation CUDA-

SIFT. SMs occupancy was improved by calculating the

maximum number of warps that could be assigned to each

SM. Authors tried to achieve load balancing between

threads by processing scales in parallel. In their experi-

mental work, authors used a tesla GPU, c2050, which has

448 CUDA cores running at 1.15 GHZ and a video

memory of 3 GB. The reported SM occupancy was 58%.

Nevertheless, the employed grid architecture and the

method, which was used to simultaneously save the

Fig. 6 Descriptor construction in the SURF algorithm

Journal of Real-Time Image Processing

123

detected points of all scales, were not discussed in the

paper.

In [20], Mohammadi et al. proposed another GPU-based

parallel implementation of the SIFT algorithm, SIFTCU. In

each scale, the first octave should be solely constructed at

the beginning. Subsequent octaves could then be con-

structed in parallel by subsampling this first octave. In the

detection stage, SIFTCU tried to speed up storing the

detected points onto the interest points array. Accordingly,

points of each scale were written in parallel to certain

designated potions of the interest points array. Once all

scales are finished, a synchronization process is done

between all array portions. The speedup gained from par-

allelizing the writing of the interest points was unfortu-

nately depressed by using atomic add operations. Atomic

add operations actually enforced sequential access to the

shared memory.

In [21], Acharya et al. implemented SIFT-GPU, which

convolved all scales for all octaves at the same time. First,

subsampling was done to generate the first layer in each

octave. Then, all scales were convolved using the same

kernel with one grid. Each block detected its scale and

octave from its location within the grid. The use of a

unified kernel with one grid was only limited to the scale

space construction stage. To speed up the execution, SIFT-

GPU also skipped some parts of the algorithm, like the sub-

pixel localization. This indeed affected the quality of the

detected points. Finally, for 480 9 640 images, the repor-

ted rate was 55 fps.

Parallelizing the SIFT algorithm using multicore CPUs

was proposed by Zhang et al. in [5]. Authors mainly

concentrated in decreasing the synchronization and

enhancing the load balancing between threads. Using a

16-core CPU, the best-reported speedup was 119. In [6],

Moren et al. presented platform-independent methods to

parallelize the SIFT algorithm on CPUs, GPUs, or

heterogeneous architectures. Therefore, authors used a

pipeline-based strategy to compute different octaves and

to independently calculate DOG layers. In the descriptor

construction stage, they further used the read only mem-

ory instead of registers. Nevertheless, as other previous

parallel implementations, presented methods employed

atomic operations, which depressed some of the gained

speedup. In summary, previous parallel implementations

of the SIFT algorithm either resulted in low-quality

interest points or could not achieve the maximum possible

speedup from the underlying parallel architecture. This is

mainly due to load imbalance, thread synchronization,

and the use of atomic operations. In this paper, we present

better solutions to these problems, which result in higher

speedup, without sacrificing the quality of the generated

interest points.

3.2 SURF parallel implementations

The first stage of the SURF algorithm, i.e., integral image

computation, could be accomplished in parallel using

prefix sum algorithms. In [22], Harris et al. employed the

naı̈ve parallel scan to calculate the prefix sum, as shown in

Fig. 7a. In the first iteration, the values of any two one-step

adjacent cells were added together. This step was then

doubled for each subsequent iteration. The problem of

naı̈ve scan was that it took too much time to finish all

required additions. Therefore, a work-efficient parallel scan

was presented by Terriberry et al. in [23], based on Blel-

loch algorithm, in [24]. As shown in Fig. 7b and c, the

work-efficient parallel scan consisted of two phases. In the

up-sweep phase, an ordinary binomial summation was

carried out. In the down-sweep phase, the value of the last

cell was first replaced by zero. Throughout iterations, cells

were manipulated in the reverse direction of the up-sweep

phase. Values of associated cells were exchanged together,

and their summation was saved in the cell with the higher

index. In [25], Bilgic et al. used the work-efficient parallel

scan to compute integral images on GPUs. In a nutshell,

each row, or column, was assigned a block to find its prefix

sum.

In [26], Fang et al. analyzed different types of paral-

lelism that could be used with image retrieval algorithms,

like SURF. These types were summarized as follows:

• Pipeline parallelism By making a pipeline of all or

some stages of the algorithm, different images could be

simultaneously processed, but in different stages.

• Scale-level parallelism Computations within the same

scale were done in parallel. However, different scales

were sequentially processed. As the number of cores

increased, authors found that scale-level parallelism

suffered from significant load imbalance and commu-

nication overhead.

• Block-level parallelism An image was partitioned into

blocks and the whole algorithm ran on each block in

parallel. Authors reported that block-level parallelism

outperformed the other two types of parallelism.

Zhu et al. presented a parallel implementation of the

SURF algorithm, CSURF, using block-level parallelism, in

[7]. Authors further used a pipeline between the CPU and

the GPU. Each kernel was divided into many smaller ones

to avoid the problem of limited shared memory. Integral

image computation was actually done on the CPU, whereas

interest points detection and descriptor construction were

accomplished on the GPU. CSURF achieved a speedup of

159 the maximally optimized CPU version. However, this

speedup depended mainly on CPU capabilities rather than

GPU capabilities. Similarly, in [27], Schulz et al. employed

Journal of Real-Time Image Processing

123

block-level parallelism in their implementation, CUDA-

SURF. CUDA-SURF was built on CUDA 2.3 and OpenCV

2.1.

Lu et al. targeted parallelizing the SURF algorithm

using multicore CPUs, in [9]. Accordingly, authors pro-

posed an adaptive pipeline parallel scheme (AD-PIPE). To

overcome the load imbalance problem, they adjust the

number of threads in each stage according to the workload.

In [28], Cheon et al. proposed an enhanced version of the

sequential SURF algorithm, eSURF. Authors made use of

the repeated scales in many octaves to unify the scale space

construction stage with the detection stage. They further

presented methods to allocate memory efficiently. eSURF

is found to be 30% faster than the original algorithm.

In [8], Yan et al. employed OpenCL to parallelize the

SURF algorithm, OpenCL SURF. To speed up the execu-

tion, authors used coalesced memory access [29]. They

also processed the detection stage of all octaves in parallel.

However, they saved the detected point using atomic

operations. For 320 9 240 images, a rate of 25 fps and a

maximum speedup of 22.89 the CPU version were

reported.

Like the parallel implementations of the SIFT, those of

the SURF algorithm suffer from the load imbalance and the

use of atomic operations. These enforce the GPU to work

sequentially. This again depresses the speedup that could

be attained from the employed parallel architecture. In this

paper, we tackle these problems by presenting new GPU-

based implementations of both SIFT and SURF algorithms.

Our implementations aim at exploiting the maximum

possible speedup from the employed GPU.

4 GPU: model of execution and challenges

In this section, we introduce basic concepts and definitions

regarding GPUs. Parallelization challenges that prevent

previous implementations from obtaining the maximum

possible speedup are also discussed. From the physical

perspective, a GPU simply consists of an array of SPs that

are grouped to form SMs, an execution manager, and dif-

ferent types of storage modules, like the global memory,

the constant memory, caches, and registers. From the

logical perspective, functions, which are executed on the

GPU, are called kernels. Each kernel constitutes a grid of

blocks. Each block, in turn, is formed from a 1D, 2D, or 3D

array of threads. Once a kernel is invoked, the execution

manager distributes the blocks over the available SMs. In

more detail, consecutive threads are grouped together to

form warps. Warp is a vendor-specific concept, and it

Fig. 7 Parallel prefix sum

algorithms: a naı̈ve parallel

scan. b Up-sweep phase of the

work-efficient parallel scan.

c Down-sweep phase of the

work-efficient parallel scan

Journal of Real-Time Image Processing

123

represents the basic unit that could be scheduled by the

execution manager. Only one warp could physically run on

an SM at a time. When a warp executes instructions with

long latency, the SM switches to another ready-to-execute

warp. Therefore, the presence of more warps on an SM

guarantees that it would often find work to do.

GPU is an example of single instruction, multiple data

(SIMD) architecture [30]. All threads within the same grid

process the same instruction, but with different data.

Therefore, these data are first transferred from the main

memory of the computer to the global memory of the GPU

card. Thereafter, they are processed using the GPU parallel

capabilities. GPU cards have a high theoretical bandwidth

with a rate of tens of gigabytes per second. This rate might

also increase to hundreds of gigabytes per second for new

memory and interconnect technologies [31]. However, the

effective bandwidth depends on how memory is actually

accessed. It is known that requesting a number of memory

locations takes less time if these locations are in a con-

secutive order within the memory. A coalesced memory

access is the type of memory accesses in which sequential

memory locations are requested. These requests are coa-

lesced together as a single memory access [29]. Accord-

ingly, if concurrent threads within a warp request

sequential locations from the global memory, only one

coalesced memory access takes place. On the contrary, if

these concurrent threads request sparse and non-adjacent

memory locations, each request is processed separately and

the bandwidth drops significantly. Therefore, a good pro-

gramming practice, in which consecutive threads request

consecutive global memory locations, results in a higher

effective bandwidth.

In order to maximize the performance of the GPU, an

optimal number of threads should be used. This optimal

number is often limited by the resources of each SM, such

as the shared memory and registers. Limitations and fea-

tures of the underlying hardware are abstracted by its

compute capability version. Furthermore, SM occupancy is

defined as the ratio of the actual number of running warps

to the maximum number of warps that could run in that

SM. In order to exploit the maximum performance of the

underlying hardware, SM occupancy should be increased.

One goal of the work presented in this paper is to increase

the SM occupancy for SIFT and SURF parallel imple-

mentations, as much as possible. To achieve this goal, we

consider two SM occupancies: theoretical and runtime. On

the one hand, for any logical organization, the theoretical

SM occupancy could be calculated according to the

employed GPU resources and limitations. On the other

hand, the runtime SM occupancy is measured during the

execution by the help of the underlying hardware and

profiling tools. It represents the average number of active

threads over a certain number of clock cycles, i.e., time.

In order to exploit the maximum performance from a

GPU, concurrent threads should be almost assigned the

same amount of work. This is known as load balance.

Unbalanced distribution of load among threads increases

the necessary time to finish the whole task and reduces the

runtime occupancy. Therefore, balancing the load between

threads is one challenge that, if not realized, would reduce

the performance of GPUs. It also reduces the performance

of previous parallel implementations of the feature

extraction algorithms on GPUs. In the context of SIFT and

SURF algorithms, scale space construction and interest

points detection stages have scales of different dimensions.

One proposal is to use a large fixed-size kernel for all

stages. However, as the execution progresses, the number

of idle threads increases and the optimal load balance could

not be realized. Therefore, in order to reduce the load

imbalance between threads, most previous parallel imple-

mentations sequentially process scales with dimension-

customized independent kernels. However, this technique

has two main drawbacks. First, multiple kernel invocations

result in a significant time loss. Second, as the execution

progresses, small kernels that are solely processed by the

GPU would leave many of the processing elements doing

nothing. Once again, the optimal load balance could not be

reached. In this paper, we try to overcome this challenge by

using one kernel for each stage, rather than for each scale.

Consequently, this allows us to reach a midway between

the too many kernel invocations, on one extreme, and the

significant load imbalance, in the other extreme.

Another challenge that reduces the performance of

GPUs, and previous parallel implementations of the feature

extraction algorithms, is the use of atomic operations.

Atomic operations are used by the GPU to enforce syn-

chronization between threads. They act as semaphores,

when multiple threads try to write to the same location in

the global or shared memory. The location is locked, and

threads are enforced to access it in a sequential manner. As

a result, atomic operations serialize parallel threads and

decrease the speedup that could be gained. Previous par-

allel implementations of SIFT and SURF algorithms use

atomic add instructions to enforce threads to write the

detected points in a unique index. Accordingly, all threads

are queued, waiting its turn to save results. Subsequent

scales could not be manipulated until the current scale is

finished. This indeed slows down the execution of the

interest point detection stage. In this paper, we try to

overcome the atomic operation challenge by presenting a

new algorithm that calculates the required unique memory

index. As there is no need to arrange points while the

detection stage is running, we use one grid of blocks to

detect all points in parallel. We create a global memory

array to write detected points in it and then do some work

to arrange these points with a unique index. Detection stage

Journal of Real-Time Image Processing

123

is computed in parallel without any serialization, and other

work is responsible for getting unique index using the

prefix sum algorithm.

5 Methodology

In this section, our proposed parallel implementations of

SIFT and SURF algorithms are discussed in detail. First,

we demonstrate the preprocessing that is done for both

SIFT and SURF. Two new algorithms, which speed up the

calculation of the prefix sum for the SURF algorithm, are

presented in Sect. 5.1. Section 5.2 explains our grid orga-

nization to enhance the load balance, in the scale space

construction stage. Our new algorithm that replaces the use

of atomic operations, in the interest points detection stage,

is then proposed in Sect. 5.3. Finally, Sect. 5.4 describes

our implementations of the orientation assignment and the

descriptor construction stages.

5.1 Data preprocessing

5.1.1 Data preprocessing for SIFT algorithm

Subsampling is the preprocessing that is required for the

SIFT algorithm. In the literature, octaves are processed

sequentially such that the first scale of any octave is not

created unless the preceding octave is completely finished.

Contrarily, in our implementation, the original image itself

is subsampled multiple times at the beginning of execution

to simultaneously create the first scale of all octaves.

Thereafter, all scales of all octaves are constructed in

parallel by convolving the already generated first scale in

each octave.

5.1.2 Data preprocessing for SURF algorithm

Computing the integral image is the preprocessing that is

required for the SURF algorithm. We propose two new

parallel algorithms to quickly calculate the integral image.

Each algorithm targets a certain GPU compute capability

version. One algorithm is for compute capability 1.9,

whereas the other is for compute capability 2.9 and higher.

In the following paragraphs, the former is named the two-

way algorithm, while the latter is named the one-way

algorithm.

The two-way algorithm is listed in Algorithm 1. It

actually implements the steps that are shown in Fig. 8. Our

two-way algorithm enhances the execution time of the

second phase of the work-efficient parallel scan, which is

discussed in Sect. 3.2. Accordingly, phase 1 is similar to

the up-sweep phase of the work-efficient parallel scan and

an ordinary binomial summation is carried out. Neverthe-

less, as shown in Fig. 8, our implementation of phase 2

starts by dividing the first row into two partitions. The

value of the last cell in the left partition is added to that of

the middle cell in the right one. At each subsequent level,

the partition size is decreased to the half and the process is

repeated. Each level in our implementation requires only

sum operations. Therefore, it takes less time than the wok-

efficient parallel scan, which needs sum and swap opera-

tions in each level.

Journal of Real-Time Image Processing

123

GPUs with compute capability 2.9 and higher have the

capability to broadcast and multicast memory addresses.

They could serve multiple read requests by different

threads within the same warp to a certain memory address

without suffering from a shared memory bank conflict. Our

one-way algorithm benefits from this capability. It is listed

in Algorithm 2, and its implementation onto 8 threads is

shown in Fig. 9. It is named a one-way algorithm because

it only requires one phase to compute the prefix sum. Our

one-way algorithm mixes between the naı̈ve parallel scan

and the work-efficient parallel scan, which are discussed in

Sect. 3.2. As shown in Fig. 9, the algorithm starts by

dividing the first row into partitions of two cells. The

partition size doubles at each subsequent level. In each

partition of P cells, the value of cell P/2 is added to that of

all successor cells within its own partition. Needless to say,

by saving the time of the second phase, our one-way

algorithm outperforms both the work-efficient parallel scan

and our proposed two-way algorithm.

5.2 Scale space construction

5.2.1 Scale space construction for SIFT algorithm

As mentioned in Sect. 4, in our implementation, we try to

reach a midway between significant load imbalance and

excessive kernel invocations. Therefore, we carry out all

the computations of the scale space construction using only

one kernel. This results in a unified grid that simultane-

ously manipulates all scales of all octaves. Figure 10 shows

an example of our unified grid for 3 octaves, of 4 scales

each. For an m 9 n image, the first scale of the first octave

needs m 9 n threads to process all pixels in parallel. This

results in a total of 4 9 m 9 n threads for the first octave.

Due to subsampling in each subsequent octave, the

required number of threads shrinks to one quarter of that in

the previous octave. Therefore, for 3 octaves of 4 scales

each, the final dimensions of our unified grid would be

(4.m, 21.n/16). It is worth emphasizing that our unified grid

could be used with any image resolution, i.e., any values of

m and n, without exceeding the grid size limitations in

CUDA.

Block-level parallelism, which is discussed in Sect. 3.2,

is used in this stage. Accordingly, an image is partitioned

into rectangular segments. Each block has the responsi-

bility to convolve pixels within one segment. Each pixel

has one thread to serve. Each thread identifies which octave

to serve by its block index in the y-direction and which

scale to serve by its block index in the x-direction. In order

to carry out the convolution process, for a Gaussian filter of

size f, each block needs pixels of its designated segment of

the image plus f/2 pixels in each side. Nevertheless, to

speed up the execution, all threads actually collaborate in

loading these pixels and coalesced memory access, which

is discussed in Sect. 4, is used. Due to the limitations on

the number of registers for compute capability 1.3, block

dimensions of 16 9 8 threads could maximally be used.

For compute capability 2.9 and higher, each block consists

of 16 9 16 threads, in order to maximize the SM

occupancy.

After finishing the convolution process, the kernel cal-

culates the DOG using a similar unified grid approach. As

shown in Fig. 11, each block processes the results of the

Gaussian convolution for its scale and the scale after it.

Therefore, collaborative loading and coalesced memory

access are again used in loading scales onto the shared

memory. Thereafter, all blocks calculate the difference

between their two designated scales to construct all DOG

layers in parallel. Finally, DOG results are saved into the

global memory.

5.2.2 Scale space construction for SURF algorithm

Similar to SIFT, we use our unified grid approach in con-

structing the scale space of the SURF algorithm. All

Journal of Real-Time Image Processing

123

Fig. 8 Explanation of the two-

way algorithm for prefix sum

computation: a phase 1, b phase

2

Fig. 9 Explanation of the one-

way algorithm for prefix sum

computation

Fig. 10 Proposed unified grid

for SIFT scale space

construction

Journal of Real-Time Image Processing

123

calculations are done in parallel by directly processing the

original image. This is realized by increasing the filter size,

according to the scale. However, our implementation of the

SURF has two differences from that of the SIFT algorithm.

First, each thread now calculates the Hessian matrix for

one point. Second, the grid size of SURF is different from

that of SIFT. No subsampling is carried out in the SURF

algorithm. Accordingly, starting from the second octave,

the number of required threads does not decrease. In other

words, for an m 9 n image, each scale needs a block of

m 9 n threads to serve it. Therefore, for 3 octaves of 4

scales each, the final dimensions of our unified grid would

be (4.m, 3.n).

5.3 Interest points detection

For both SIFT and SURF algorithms, the detection stage

could be divided into two main steps. In the first step, DOG

extrema are located and then filtered by deleting low-

contrast points. In our implementation of the two algo-

rithms, we used our unified grid approach, as discussed in

Sect. 5.2, to locate all interest points in parallel. An image

is again partitioned into rectangular segments that are

processed by blocks of our unified grid in parallel. Each

pixel is assigned a thread to serve. As explained in

Sect. 2.1, the thread should compare that pixel to its 26

neighbors, in order to decide whether it is a local maximum

or not. Therefore, in a coalesced manner, threads within a

block collaboratively load pixels of that block plus one

pixel in each direction to the shared memory. For example,

for a block of 16 9 16 threads, a total of 18 9 18 pixels

are loaded. Consequently, comparisons are simultaneously

made by all threads and candidate interest points are gen-

erated. Finally, these candidate points are filtered using

sub-pixel interpolation to eliminate low-contrast points.

Strong points, which survive the filtering process, consti-

tute the interest points of the image.

In the second step of the interest points detection stage,

detected points are stored into a global interest points array.

In previous parallel implementations of the two algorithms,

all threads share a global index, which they use to store

detected points into that global interest points array. As

previously discussed in Sect. 4, these implementations

further use atomic add instructions to increment this index.

In other words, a thread could not increase the global index

and store its detected point, if any, unless its preceding

thread is completely finished. Indeed, this serializes the

execution and a potential speedup is therefore lost. Nev-

ertheless, in our implementation of the two algorithms, we

completely eliminate the use of these atomic add instruc-

tions. Instead, we propose a methodology that allows each

thread to directly know its designated index in the global

interest points array. Using our approach, all threads use

their unique index to simultaneously store the detected

interest points.

Our implementation of the interest points detection stage

is shown in Fig. 12 and detailed in Algorithm 3. We pro-

pose a new 3-kernel methodology to enable threads to

efficiently detect interest points and save them, without

using atomic instructions. Kernel 1 detects candidate

interest points and filters weak ones out. Kernels 2 and 3

are responsible for saving the detected points into the

global interest points array. Figure 12 lists the tasks per-

formed by each kernel in detail. In our methodology, each

block has two local arrays, which are shared by its threads.

The dimensions of these arrays are those of the block. The

first one is the block index array, which holds 1s or 0s to

detect whether the pixel in any location is an interest point

or not, respectively. The second one is the block scale

array, which holds the scale of detected interest points.

Moreover, besides the global interest points array, our

methodology uses one global index array. At the end of our

methodology, this global index array would have a unique

index for each thread. The unique index would be used by

this thread to write into the global interest points array. The

dimensions of this global index array are those of the DOG

middle layer.

Fig. 11 Unified grid for DOG calculation

Journal of Real-Time Image Processing

123

Algorithm 3 explains our methodology in detail. Kernel

1 is corresponding to lines 1–17. In the first three lines, the

kernel loads pixels into the shared memory. In lines 4–8,

each pixel is compared to its 26 neighbors to identify

whether it is a candidate interest point or not. In lines 9–10,

sub-pixel interpolation is carried out to eliminate weak

points. In lines 11–16, for each detected interest point, a

value of 1 is written in its corresponding location of the

block index array. The scale is also saved into its corre-

sponding location of the block scale array. In line 17,

results of all threads are finally saved into the global index

array. As an example of arbitrary outputs resulted from

kernel 1, Fig. 13a and b shows 5 9 5 portions of the block

scale array and the block index array after applying kernel

1, respectively.

Fig. 12 Kernels used in the

interest points detection stage

Fig. 13 An example on our 3-kernel methodology to generate a unique global index for each interest point. a Block scale array after applying

kernel 1. b Block index array after applying kernel 1. c Global index array after completely applying our methodology

Journal of Real-Time Image Processing

123

scale is found, the thread saves its corresponding point into

the global interest points array, using its unique index from

the global index array. Finally, for the same 5 9 5 arbitrary

outputs resulted from kernel 1, Fig. 13c shows its corre-

sponding 5 9 5 portion of the global index array, after

applying kernel 3. As shown in the figure, each interest

point, which has a scale in Fig. 13a, gets a unique global

index in Fig. 13c. This unique index is directly used to save

the interest point into the global interest points array,

without any need for atomic add instructions.

At the end, one point should be emphasized. Although

our methodology carries out extra work than previous

parallel implementations, we managed to completely avoid

using atomic add instructions. Therefore, our methodology

results in a lower overall execution time.

5.4 Orientation assignment and descriptor
construction

In our implementation of the orientation assignment stage

for both SIFT and SURF algorithms, each block calculates

the orientation of many interest points. In detail, every 32

threads within a block are assigned a single interest point to

serve. Each thread is only responsible for calculating one

or two directions and saving them in the orientation his-

togram. The dominant direction of the point is assigned as

its orientation.

In our implementation of the descriptor construction

stage for both SIFT and SURF algorithms, each block

consists of 16 9 8 threads. We assign 16 threads for each

interest point to construct its descriptor vector. These

threads are corresponding to the 16 regions of the algo-

rithm, and each of them calculates the gradients histogram

for a subregion in the descriptor window.

6 Experimental results

This section presents our experimental results and validates

the efficiency of our parallel implementations. Throughout

the section, we refer to our parallel implementation of SIFT

and SURF algorithms by PR-SIFT and PR-SURF, respec-

tively. In our experiments, we use an Intel Xeon, E5-2667,

CPU with 16 GB RAM. The Intel Xeon is a 130 W CPU

that has 6 cores with 15 MB cache and works at 2.9 GHz.

To verify the powerfulness of our implementations, four

GPUs with a different number of cores, i.e., SPs, are used.

These GPUs are NVIDIA GTX-275, 240 cores and

1.4 GHz, NVIDIA GTX-480, 480 cores and 1.24 GHz,

NVIDIA GTX-750, 512 cores and 1.02 GHZ, and NVIDIA

GTX-960, 1024 cores and 1.17 GHz. The four GPUs have

a compute capability of 1.3, 2.0, 5.0, and 5.2, respectively.

It is worth mentioning that compute capabilities of 1.9 and

2.9 are not supported starting CUDA 7 and CUDA 9,

respectively [32]. However, we consider them to show the

efficiency of our implementations, in case a resource-lim-

ited GPU is used. Therefore, results of GTX-275 and GTX-

480 are only included when we evaluate the performance

of our implementations against changes in GPU features

and capabilities. Otherwise, results of the two other GPUs

are only presented. Images used in our experiments are

taken from Barandiaran [33] and Mikolajczyk [34] data-

sets. The two datasets are widely used in comparing local

features extraction techniques. The following subsections

discuss our results in terms of speedup, accuracy, and SM

occupancy. All timing results presented in this section

include the processing time and the data transfer time from

main memory to the GPU.

6.1 Speedup

In this subsection, we aim at evaluating how speedy are our

implementations with respect to previous ones. This eval-

uation is done for images of different qualities. Accord-

ingly, for both SIFT and SURF, we start by presenting the

speedup of our implementation over the sequential one.

Thereafter, the performance of our implementation in real

time is evaluated by calculating the achieved frames per

second. Our implementations are then compared to previ-

ous parallel counterparts of the two algorithms. Finally, a

statistical analysis using the standard deviation and the

coefficient of variation is performed to evaluate how con-

sistent our implementations are in realizing the presented

speedup. Throughout this subsection, Barandiaran dataset

is used [33]. For any image quality, in order to increase the

credibility of our results, ten arbitrary images of that same

quality are selected from the dataset. The average speedup

and frames per second are then calculated over these ten

images. For different image qualities, these averages are

the ones used in presenting our results in all figures within

the subsection.

6.1.1 SIFT results

For images of different qualities, we first evaluate our

parallel implementation with respect to the sequential

implementation, SIFTPP [18]. Figure 14 shows the

speedup we achieved using the four employed GPUs for

images of different resolutions. The figure clarifies that the

speedup increases when either the number of cores within

the GPU or the image resolution increases. Accordingly,

for an image of 1280 9 1024 resolution, PR-SIFT, running

on GTX-960, achieves a maximum speedup of 289 with

respect to the sequential algorithm that runs on the Xeon,

E5-2667, CPU.

Journal of Real-Time Image Processing

123

To evaluate the efficiency of our implementation in real-

time applications, we calculate the number of frames that

could be processed by it per second. Figure 15 shows this

frame rate for the same GPUs and image quality. The

figure first shows that the achieved frame rate decreases as

the number of cores within the GPU decreases or the image

resolution increases. Accordingly, PR-SIFT manages to

achieve a maximum frame rate of 133 frames per second

for an image resolution of 320 9 240. Furthermore, for

different image qualities, the figure clarifies that our

implementation could efficiently be used in real-time

applications.

We then compare the frame rate resulted from our

implementation to that of previous parallel implementa-

tions, which are reviewed in Sect. 3.1. SIFT-GPU [21],

CUDA-SIFT [19], and two versions of the platform-

independent implementation, OpenCL SIFT [6], are con-

sidered for comparison. One version runs on GPUs,

whereas the second version is executed on our 6-core Xeon

CPU. It is worth mentioning that we do not actually

implement CUDA-SIFT. As it is compared to SIFT-GPU in

[17], we rather employ normalized results for it with

respect to SIFT-GPU. For the GTX-750 GPU, Fig. 16

shows the frame rate resulted from the five aforementioned

implementations. For images with resolutions of

640 9 480 and higher, all GPU-based implementations

significantly outperform the CPU-based one. Moreover,

our own implementation accomplishes a higher frame rate

than all other parallel implementations. In general, the

percentage enhancement in the frame rate of our imple-

mentation with respect to that of previous implementations

grows up as the image quality increases. For example, for

0

5

10

15

20

25

30

320*240 640*480 720*1280 1280*1024

S
p

ee
d

-U
P

image quality

GTX-275

GTX-480

GTX-750

GTX-960

Fig. 14 Speedup achieved by

PR-SIFT over SIFTPP for

different GPUs and image

quality

0

20

40

60

80

100

120

140

320*240 640*480 720*1280 1280*1024

fr
am

es
 p

er
 s

ec
o

n
d

Iimage quality

GTX-275

GTX-480

GTX-750

GTX 960

Fig. 15 Frame rate resulted

from PR-SIFT for different

GPUs and image quality

Journal of Real-Time Image Processing

123

an image resolution of 1280 9 1024, our implementation

significantly outperforms SIFT-GPU and OpenCL SIFT,

which runs on the Xeon CPU. Furthermore, it achieves

1.42 and 1.24 higher frame rates with respect to CUDA-

SIFT and OpenCL SIFT, which runs on the GPU,

respectively.

We then compare the frame rate resulted from our

implementation to that of previous parallel implementa-

tions, which are reviewed in Sect. 3.1. SIFT-GPU [21],

CUDA-SIFT [19], and two versions of the platform-inde-

pendent implementation, OpenCL SIFT [6], are considered

for comparison. One version runs on GPUs, whereas the

second version is executed on our 6-core Xeon CPU. It is

worth mentioning that we do not actually implement

CUDA-SIFT. As it is compared to SIFT-GPU in [17], we

rather employ normalized results for it with respect to

SIFT-GPU. For the GTX-750 GPU, Fig. 16 shows the

frame rate resulted from the five aforementioned imple-

mentations. For images with resolutions of 640 9 480 and

higher, all GPU-based implementations significantly out-

perform the CPU-based one. Moreover, our own imple-

mentation accomplishes a higher frame rate than all other

parallel implementations. In general, the percentage

enhancement in the frame rate of our implementation with

respect to that of previous implementations grows up as the

image quality increases. For example, for an image reso-

lution of 1280 9 1024, our implementation significantly

outperforms SIFT-GPU and OpenCL SIFT, which runs on

the Xeon CPU. Furthermore, it achieves 1.42 and 1.24

higher frame rates with respect to CUDA-SIFT and

OpenCL SIFT, which runs on the GPU, respectively.

For the resolution of 320 9 240, SIFT-GPU managed to

realize a frame rate higher than our PR-SIFT. This could be

explained that SIFT-GPU ignores some steps of the algo-

rithm, like filtering out weak detected points [21]. This

allows it to outperform all parallel implementations for

low-quality images. However, as the resolution increases

and without filtering weak points out, the number of

detected points increases. SIFT-GPU uses atomic add

instructions to sequentially store these points into the glo-

bal interest points array. This makes SIFT-GPU to take

considerable time to save all detected points. As a result, it

could not outperform our PR-SIFT for higher resolutions.

Furthermore, its performance even deteriorates as the

image quality increases.

Although our implementation outperforms previous

ones, in terms of average speedup and frame rate, we

herein aim at statistically evaluating the spread of our ten

runs around these average values. Therefore, we calculate

the standard deviation and the coefficient of variation for

all implementations and image quality. These two statisti-

cal metrics reflect how consistent an implementation is in

achieving the aforementioned speedup and frame rate. The

lower the value of the coefficient of variation, the more

consistent the implementation is. Table 1 shows these two

metrics for the frame rate results in Fig. 16. For any image

quality, S and C represent the standard deviation and the

percentage coefficient of variation, respectively. The

table clarifies that, for any image quality, our PR-SIFT has

the lowest coefficient of variation and hence is the most

consistent one. It also signifies that our implementation

keeps its consistency as the image quality increases. The

percentage coefficient of variation of our implementation

only increases from 3.08 to 3.3% as the image quality

changes from 320 9 240 up to 1280 9 1024. Neverthe-

less, the percentage coefficient of variation of previous

parallel implementations might quadruple, as for OpenCL

SIFT, for the same change in image quality.

6.1.2 SURF results

Similar to the SIFT algorithm, we first verify the efficiency

of our parallel SURF implementation with respect to the

sequential algorithm. For different image resolutions,

0

20

40

60

80

100

120

140

160

320*240 640*480 720*1280 1280*1024

fr
am

es
 p

er
 s

ec
o

n
d

image quality

PR-SIFT on GTX-750

CUDA-SIFT on GTX-750

OpenCL SIFT on GTX-750

SIFT-GPU on GTX-750

OpenCL SIFT on Xeon E5-
2667

Fig. 16 Frame rate resulted

from different parallel

implementations of the SIFT

algorithm

Journal of Real-Time Image Processing

123

Fig. 17 shows the speedup achieved by our PR-SURF over

the sequential SURF algorithm, for the same previously

mentioned GPUs. The figure clarifies that the speedup

continuously grows up by increasing either the number of

cores within the GPU or the image resolution. Accordingly,

for an image of 1280 9 1024 resolution, PR-SURF, run-

ning on GTX-960, achieves a maximum speedup of

18 9 with respect to sequential SURF that runs on the

Xeon CPU.

In order to evaluate the efficiency of our SURF parallel

implementation in real-time applications, Fig. 18 shows

the realized frame rate, for the same GPUs and image

quality. The figure first clarifies that our PR-SURF results

in a high frame rate for all GPUs and image resolutions.

For example, for GTX-960, our implementation achieves a

frame rate that ranges from 230 fps, for the lowest reso-

lution, to 49 fps, for the highest resolution. This proves that

our implementation could efficiently be used in real-time

applications. Moreover, the figure shows that the achieved

frame rate decreases as the number of cores within the

GPU decreases or the image resolution increases.

Finally, we compare the frame rate resulted from PR-

SURF to that of previous parallel implementations, which

are reviewed in Sect. 3.2. We consider two GPU-based

implementations, OpenCL SURF [8] and CSURF [7], and

one CPU-based implementation, AD-PIPE, for compari-

son. For the GTX-750 GPU, Fig. 19 shows the frame rate

resulted from the four implementations. The figure first

clarifies that all GPU-based implementations significantly

outperform the CPU-based one. Moreover, our own

implementation accomplishes a higher frame rate than all

other parallel implementations. The percentage enhance-

ment in the frame rate of our implementation with respect

to that of previous implementations grows up as the image

quality increases. For example, for an image resolution of

1280 9 1024, our PR-SURF achieves 1.1 and 1.14 higher

frame rates with respect to CSURF and OpenCL SURF,

respectively.

Similar to the SIFT algorithm, we finally evaluate the

spread of the performed ten runs around the average values

and the consistency of our implementation in achieving the

aforementioned speedup and frame rate. Consequently,

Table 2 represents the standard deviation (S) and the per-

centage coefficient of variation (C) for the frame rate

results in Fig. 19. The table clearly shows that our PR-

SURF has the lowest coefficient of variation. This again

Table 1 Standard deviation and

coefficient of variation of

different parallel SIFT

implementations and image

quality

320 9 240 640 9 480 720 9 1280 1280 9 1024

S C S C S C S C

PR-SIFT 3.50 3.08 2.21 3.09 1.39 3.45 0.81 3.30

CUDA-SIFT 2.77 4.04 2.08 6.34 1.53 6.35 1.32 6.60

OpenCL SIFT 4.04 3.68 3.16 4.58 2.62 7.08 1.56 6.50

SIFT-GPU 7.32 4.90 5.61 7.85 2.89 10.40 1.70 9.00

OpenCL SIFT 3.80 4.27 2.65 9.36 1.54 10.85 1.23 16.40

S is the standard deviation, whereas C is the % coefficient of variation

0

2

4

6

8

10

12

14

16

18

20

320*240 640*480 720*1280 1280*1024

sp
ee

d
u

p

image quality

GTX-275

GTX-480

GTX-750

GTX-960

Fig. 17 Speedup achieved by

PR-SURF over the sequential

SURF for different GPUs and

image quality

Journal of Real-Time Image Processing

123

emphasizes that our implementations are the most consis-

tent in achieving the presented speedup and frame rate. The

table also shows that this consistency becomes more sig-

nificant as the image quality increases. Accordingly, for an

image quality of 1280 9 1024, the coefficient of variation

of PR-SURF is 1.89, 1.71, and 2.26 lower than that of

CSURF, OpenCL SURF, and AD-PIPE, respectively.

6.2 Accuracy

In this subsection, we evaluate the accuracy of our SIFT

and SURF implementations in detecting interest points.

Before presenting our results, we quickly introduce the

Mikolajczyk dataset [34], which is used throughout this

subsection. Mikolajczyk dataset is a transformation-type

one that contains eight image sets. Each set consists of six

images. These are the original image and five transformed

variants from this original image. Consequently, the five

transformed images are obtained by introducing changes of

different degrees into the blur radius, the lightening, the

view angle, the rotation, the zoom, and the compression

ratio. For seven image sets, these changes are done phys-

ically by adjusting the camera focus, brightness, position,

angle, and zoom. For the eighth image set, the changes are

0

50

100

150

200

250

320*240 640*480 1280*720 1280*1024

fr
am

es
 p

er
 s

ec
o

n
d

image quality

GTX-275

GTX-480

GTX-750

GTX-960

Fig. 18 Frame rate resulted

from PR-SURF for different

GPUs and image quality

0

50

100

150

200

250

320*240 640*480 1280*720 1280*1024

fr
am

es
 p

er
 s

ec
o

n
d

Image Quality

PR-SURF on GTX-750

CSURF on GTX-750

OpenCL-SURF on GTX-750

AD-PIPE on Xeon E5-2667

Fig. 19 Frame rate resulted

from different parallel

implementations of the SURF

algorithm

Table 2 Standard deviation and

coefficient of variation of

different parallel SURF

implementations and image

quality

320 9 240 640 9 480 720 9 1280 1280 9 1024

S C S C S C S C

PR-SURF 3.96 1.86 2.44 3.48 2.01 4.03 1.92 4.87

CSURF 4.12 2.08 3.93 6.15 3.27 7.61 2.96 9.19

OpenCL SURF 3.79 1.98 3.28 5.37 2.84 7.00 2.43 8.33

AD-PIPE 1.94 2.23 1.78 4.81 1.24 6.53 1.21 11.03

S is the standard deviation, whereas C is the % coefficient of variation

Journal of Real-Time Image Processing

123

introduced synthetically by increasing the compression

ratio. Nevertheless, for the blur radius, the lightening, the

zoom, the rotation, and the compression ratio, authors do

not explicitly specify the magnitude of changes they

introduce in each transformed image. For the view angle,

changes are introduced by moving the camera from the

view center position by 20�, 30�, 40�, 50�, and 60�.
Throughout this subsection, we present results of the eight

image sets. These are the Leuven image set, in which the

lightening decreases, the Bikes and Trees image sets, in

which the blur radius increases, the Graffiti and Wall image

sets, in which the view angle increases in a step of 10�, the
Bark and Boat image sets, in which both the rotation and

zoom increases, and the UBC image set, in which the

compression ratio increases.

6.2.1 For SIFT

In order to evaluate the accuracy of our implementation of

SIFT algorithm, we first calculate the total number of

detected interest points resulted from all parallel imple-

mentations. Over all images within the eight aforemen-

tioned image sets, Table 3 presents the average number of

detected interest points from all implementations.

As the total number of detected interest points might be

misleading, we further test our detection accuracy using

true-positive points only. These are the points which exist

at the same locations of interest points resulted from the

sequential algorithms, or displaced from these locations by

a maximum of one pixel. Thereafter, we validate our

implementations using two quantitative metrics, the pre-

cision and the recall [35]. For each of the five transformed

images within an image set, the two metrics represent the

ratio of the number of true-positive points resulted from

applying an implementation onto that transformed image to

the total number of detected points. While precision con-

siders total points resulted from applying the implementa-

tion itself, recall considers the sequential algorithm instead.

Over all images within the eight considered image sets,

Figs. 20 and 21 represent the resulted average precision

and recall of different SIFT implementations. The two

figures clearly signify the accuracy of our implementation.

Accordingly, the least calculated precision and recall of our

implementation are 77 and 70% for the Wall image set,

respectively. Furthermore, the figures show that our PR-

SIFT has the highest accuracy over all other parallel SIFT

implementations, except for OpenCL SIFT on the Boat

image set. Finally, the figures clarifies that SIFT-GPU is

the least accurate parallel SIFT implementation. Its preci-

sion and recall go down to 69 and 58% for the Wall image

set, respectively.

Once more, using true-positive points might not be the

most accurate measure of accuracy. Therefore, for each

transformed image within an image set, we then evaluate

our accuracy by calculating the percentage matching

accuracy [34]. Percentage matching accuracy represents

the ratio of the correct matched points, resulted from

applying an implementation on a transformed image, to the

total number of detected points, resulted from applying the

same implementation on the original image. Figure 22

represents the calculated percentage matching accuracy of

different SIFT implementations. The five sub-figures rep-

resent an image set in which the lightening decreases,

Leuven, an image set in which the blur radius increases,

Bikes, an image set in which the view angle increases,

Graffiti, an image set in which the compression ratio

increases, UBC, and an image set in which both the rota-

tion and zoom increases, Boat, respectively. For each sub-

figure, the five ticks within the horizontal axis represent the

five transformed images within the image set. The fig-

ure first shows that SIFT-GPU is the least accurate

implementation. Over almost all images with image sets,

the figure further emphasizes that our PR-SIFT has the

highest percentage matching accuracy over all other

implementations.

6.2.2 For SURF

Similar to the SIFT algorithm, the number of detected

interest points resulted from all SURF implementations are

Table 3 Total number of

detected interest points of

different SIFT implementations

(presented numbers are

averages over all images within

the image set)

Image set Implementation

SIFT PR-SIFT CUDA-SIFT SIFT-GPU OpenCL SIFT

Bark 1812 1760 1725 1691 1657

Boat 1903 1822 1849 1553 1709

Leuven 984 933 961 838 863

Bikes 946 910 832 755 921

Trees 2289 2271 2362 2333 2216

UBC 1749 1714 1774 1488 1423

Graffiti 2619 2580 2422 2219 2453

Wall 2306 2244 2177 1981 2377

Journal of Real-Time Image Processing

123

found. Over all images within an image set, Table 4 shows

the average number of detected interest points of SURF,

PR-SURF, OpenCL SURF, and CSURF. Thereafter, the

average precision and recall of all implementations are

calculated and are shown in Figs. 23 and 24, respectively.

The two figures again emphasize the accuracy of our

implementations. The least recorded precision and recall

are found to be 79.5 and 68% for the Wall image set,

respectively. The two figures also clarify that our imple-

mentation outperforms other parallel SURF implementa-

tions with respect to both precision and recall, except for

OpenCL SURF on Bark and Trees image sets.

Similar to Fig. 22, the percentage matching accuracy is

calculated for different lightening, blur radii, view angles,

compression ratios, and both rotations and zooms. Fig-

ure 25 shows the resulted percentage accuracy of different

SURF implementations. The figure clarifies that CSURF is

the least accurate implementation. Moreover, it again

shows that our PR-SURF significantly outperforms the two

other parallel SURF implementations.

6.2.3 Example images

In this subsection, we aim at visually showing the accuracy

of our implementation in detecting interest points, under

aforementioned changes. As a proof of concept, we suffice

with one transformed image from three image sets, Leuven,

Bikes, and Graffiti. Accordingly, Fig. 26 presents sample

results of our SIFT and SURF implementations. Sub-fig-

ures (a), (b), and (c) show interest points detected by our

PR-SIFT, whereas sub-figures (d), (e), and (f) show these

points for our PR-SURF. Each sub-figure has two images.

The image to the left is the original image within the

corresponding image set, whereas that to the right is the

fourth transformed variant, in which the blur radius, the

lightening, or the view angle is changed. Yellow lines

connect between correctly matched interest points of the

two images. Consequently, more yellow lines indicate

better matching accuracy. In detail, sub-figures 26a and d

connect between matched points of original and Blur 5

images of the Leuven image set. The percentage matching

accuracies corresponding to these sub-figures are 94 and

90%, respectively. This is reflected by a large number of

yellow lines. Similarly, Fig. 26b and e connects between

0

Bar
k

Boa
t

Le
uv

an
Bike

s

Tre
es

UBC

Gra
ffit

i
W

all

0.2

0.4

0.6

0.8

1

P
re

ci
si

o
n

Image group

PR-SIFT

CUDA-SIFT

SIFT-GPU

OpenCL SIFT

Fig. 20 Average precision of

different SIFT parallel

implementations (average over

all images within the image set)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Bark Boat Leuven Bikes Trees UBC Graffiti Wall

R
ec

al
l

Image group

PR-SIFT

CUDA-SIFT

SIFT-GPU

OpenCL SIFT

Fig. 21 Average recall of

different SIFT parallel

implementations (average over

all images within the image set)

Journal of Real-Time Image Processing

123

matched points of original and Light 5 images of the Bikes

image set. The percentage matching accuracies corre-

sponding to these sub-figures are 87 and 83%, respectively.

Therefore, the number of yellow line is slightly less than

that of the Leuven image set. Finally, Fig. 26c and f con-

nects between matched points of original and 40� trans-

formed images of the Graffiti image set. The percentage

matching accuracies corresponding to these sub-figures are

43 and 61%, respectively. This is reflected by a lower

number of yellow lines in the two sub-figures. In a nutshell,

Fig. 26 visually clarifies that our implementations have

good detection accuracies when changes are introduced

into an image. Therefore, at the end of this subsection, we

could conclude that our implementations manage to speed

up both SIFT and SURF algorithms with minimal effect on

their detection accuracy.

6.3 SM occupancy

In this subsection, we aim at evaluating the SM occupancy

of our implementations with respect to that of previous

CUDA-based ones. SM occupancy depends mainly on the

logical organization of each implementation. Throughout

the execution of SIFT and SURF algorithms, this organi-

zation changes from one stage to another. Consequently,

for all CUDA-based implementations, we find the SM

Fig. 22 Percentage matching accuracy of different SIFT implementations for different lightening, blur radii, view angles, compression ratios,

and rotations/zooms

Journal of Real-Time Image Processing

123

occupancy in each stage of the two algorithms. First, in

Sect. 6.3.1, we calculate the theoretical SM occupancy

according to the logical organization of each implementa-

tion. This theoretical SM occupancy represents a ceiling

that could not be exceeded by the implementation. How-

ever, it is not guaranteed during runtime due to other fac-

tors, which might affect the occupancy, like the load

imbalance. Therefore, in Sect. 6.3.2, we present the run-

time SM occupancy of different implementations in dif-

ferent stages. This runtime SM occupancy is extracted from

NVIDIA profiler toolkit. NVIDIA programming guide

names the runtime SM occupancy the achieved occupancy.

Accordingly, for the rest of this subsection, we adopt

NVIDIA name for that term. Moreover, for simplicity and

as being logically implied, we drop the SM letters from

both occupancies. Finally, obtained results show that our

Table 4 Total number of detected interest points of different SURF

implementations

Image set Implementation

SURF PR-SURF OpenCL SURF CSURF

Bark 905 926 798 824

Boat 930 1028 828 947

Leuven 482 476 507 553

Bikes 473 478 477 430

Trees 1389 1356 1229 1445

UBC 903 921 937 881

Graffiti 1515 1475 1506 1538

Wall 1145 1127 1099 1087

Presented numbers are averages over all images within the image set

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bark Boat Leuven Bikes Trees UBC Graffiti Wall

P
re

ci
si

o
n

Image group

PR-SURF

OpenCL SURF

C-SURF

Fig. 23 Average precision of

different SURF parallel

implementations (average over

all images within the image set)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Bark Boat Leuven Bikes Trees UBC Graffiti Wall

R
ec

al
l

Image group

PR-SURF

OpenCL SURF

C-SURF

Fig. 24 Average recall of

different SURF parallel

implementations (average over

all images within the image set)

Journal of Real-Time Image Processing

123

implementations outperform other CUDA-based ones with

respect to both theoretical and achieved occupancies.

6.3.1 Theoretical occupancy

As explained in Sect. 4, theoretical occupancy is the ratio

of the number of warps generated by an implementation to

the maximum number of warps that could run on this SM.

SM occupancy enhances if more threads, and hence, warps,

are generated by the presented implementation. The max-

imum number of threads, blocks, warps, and registers per

SM is decided according to the compute capability version

of the GPU. For example, for GTX-480 with compute

capability 2.0, a maximum of 8 blocks, 48 warps, and 32 k

registers are allowed per SM. Each warp consists of 32

threads. In our implementation of the descriptor construc-

tion stage of both SIFT and SURF algorithms, we use a

block organization of 8 9 16 threads. This results in a total

of 128 threads, which are equivalent to 4 warps per each

block. On the other hand, the number of employed blocks

is limited by the maximum number of registers. Our kernel

requires 29 registers for each thread. Therefore, a total of

3712 registers, i.e., 128 9 29, are needed for each block.

Dividing the maximum allowable number of registers,

Fig. 25 Percentage matching accuracy of different SURF implementations for different lightening, blur radii, view angles, compression ratios,

and rotations/zooms

Journal of Real-Time Image Processing

123

32 k, by 3712 gives 8.8. Therefore, 8 blocks are used in our

kernel. The total number of warps for our kernel is

accordingly 32 warps, i.e., 8 blocks 9 4 warps per block.

As the maximum number of possible warps is 48, our

theoretical occupancy is 66.6%.

In a way similar to that described in the previous

paragraph, the theoretical occupancy of PR-SIFT, CUDA-

SIFT, SIFT-GPU, PR-SURF, and CSURF is calculated for

all stages of the two algorithms. It is worth mentioning that,

for GTX-275, a maximum of 8 blocks, 32 warps, and 16 k

registers are allowed per SM. For GTX-750 and GTX-960,

a maximum of 32 blocks, 64 warps, and 64 k registers are

allowed per SM. Accordingly, for the two resource-rich

GPUs with compute capability 5.9, all algorithms achieve

a theoretical occupancy of 100% in all stages. These two

GPUs put no restrictions on the logical organization of any

implementation. On the other hand, for the other two

resource-limited GPUs, our implementations outperform

their counterparts with respect to the theoretical occu-

pancy. For GTX-275 and GTX-480, Tables 5, 6, 7, and 8

summarize the resultant theoretical occupancies for the

scale space construction, interest points detection, orien-

tation assignment, and descriptor construction stages,

Fig. 26 Detection accuracy of PR-SIFT and PR-SURF for different

blur radii, lightening, and view angles. Original image is at the left,

and the transformed one is at the right. Yellow lines connect between

matched points of the two images. a Matched points between original

and Blur 5 images of the Leuven image set using PR-SIFT. bMatched

points between original and Light 5 images of the Bikes image set

using PR-SIFT. c Matched points between original and 40�

transformed images of the Graffiti image set using PR-SIFT.

d Matched points between original and Blur 5 images of the Leuven

image set using PR-SURF. e Matched points between original and

Light 5 images of the Bikes image set using PR-SURF. f Matched

points between original and 40� transformed images of the Graffiti

image set using PR-SURF

Table 5 Theoretical occupancy of different parallel implementations

of SIFT and SURF algorithms, for the scale space construction stage

Compute capability

1.9

Compute capability

2.9

PR-SIFT 62% 83%

CUDA-SIFT 62% 83%

SIFT-GPU 50% 67%

PR-SURF 62% 83%

CSURF On CPU On CPU

Journal of Real-Time Image Processing

123

respectively. The tables clarify that our implementations

achieve higher or at least the same theoretical occupancy

over all other CUDA-based implementations. In other

words, our implementations outperform other CUDA-

based implementations with respect to theoretical occu-

pancy in at least two out of the four stages of the algo-

rithms. Furthermore, for the descriptor construction stage,

our implementations outperform all other CUDA-based

implementations. For example, for compute capability 2.9,

our PR-SIFT has 8.3 and 10.2% higher theoretical occu-

pancy than CUDA-SIFT and SIFT-GPU, respectively. PR-

SURF also achieves an 8.6% higher theoretical occupancy

than CSURF.

6.3.2 Achieved occupancy

As mentioned at the beginning of Sect. 6.3, other factors,

like the load imbalance, might result in an achieved

occupancy lower than the theoretical one. In this subsec-

tion, we aim at evaluating the actual achieved occupancy of

our implementations with respect to previous parallel ones.

Therefore, we use the NVIDIA profiler toolkit to extract

the achieved occupancy of all CUDA-based implementa-

tions. For GTX-275 and GTX-480, our implementations

result in higher achieved occupancy. However, these

results are excluded as the theoretical occupancy already

reflected the higher performance of our implementations

for these two GPUs. Nevertheless, for both GTX-750 and

GTX-960, Fig. 27 shows the achieved occupancy resulted

from all implementations in each stage of SIFT and SURF

algorithms. The figure shows that our implementations

realize higher achieved occupancy for almost all stages.

The only exception happens in the orientation assignment

stage, in which SIFT-GPU realizes 1.9% more achieved

occupancy than ours. However, our PR-SIFT results in 7,

26, and 6.3% higher achieved occupancy than SIFT-GPU

for scale space construction, interest points detection, and

descriptor construction stages, respectively. Similarly, the

achieved occupancy of PR-SIFT exceeds that of CUDA-

SIFT by 14, 22, 3.6, and 2.9% for the scale space con-

struction, interest points detection, orientation assignment,

and descriptor construction stages, respectively. Finally,

our PR-SURF outperforms CSURF by 26, 3, and 3.5% for

the same last three stages, respectively.

7 Conclusion and future work

This work presents new CUDA-based parallel implemen-

tations of two spatiotemporal algorithms for image features

extraction: SIFT and SURF. The proposed implementa-

tions decrease the processing time of the two algorithms by

solving problems in previous parallel implementations, like

load imbalance, low SM occupancy, and the use of atomic

Table 6 Theoretical occupancy

of different parallel

implementations of SIFT and

SURF algorithms, for the

interest points detection stage

Compute capability 1.9 (%) Compute capability 2.9 (%)

PR-SIFT 62 83

CUDA-SIFT 56 79

SIFT-GPU 62 83

PR-SURF 62 83

CSURF 50 83

Table 7 Theoretical occupancy

of different parallel

implementations of SIFT and

SURF algorithms, for the

orientation assignment stage

Compute capability 1.9 (%) Compute capability 2.9 (%)

PR-SIFT 50 67

CUDA-SIFT 50 67

SIFT-GPU 28 56

PR-SURF 62 83

CSURF 62 83

Table 8 Theoretical occupancy

of different parallel

implementations of SIFT and

SURF algorithms, for the

descriptor construction stage

Compute capability 1.9 (%) Compute capability 2.9 (%)

PR-SIFT 50.00 66.6

CUDA-SIFT 33.00 58.3

SIFT-GPU 33.00 56.4

PR-SURF 62.50 66.6

CSURF 56.25 58.0

Journal of Real-Time Image Processing

123

operations. The frame rate achieved by our implementa-

tions allows them to be efficiently used with real-time

applications. Our implementations also have a minimal

impact on the accuracy. Many experiments are conducted

using an Intel Xeon CPU, E5-2667, and 4 different GPUs

to verify the efficiency of our implementations. Results

show that our implementations achieve higher speedup,

higher frame rate, higher accuracy, and higher SM occu-

pancy than previous parallel implementations of the two

algorithms.

In future, we will try to extend the work presented in this

paper in two directions. First, we would adjust our imple-

mentations to run on multiple connected GPUs. This would

allow us to process images of very high resolution in real

time. Second, as our implementations are currently cus-

tomized to NVIDIA GPUs, we would present platform-

independent ones that could be used with any other GPUs.

References

1. Lowe, D.: Distinctive image features from scale-invariant key-

points. Int. J. Comput. Vis. 60(2), 91–110 (2004)

2. Laptev, I., Lindeberg, T.: Local descriptors for spatio-temporal

recognition. Lect. Notes Comput. Sci. 3667, 91–103 (2006)

3. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust

features (SURF). Comput. Vis. Image Underst. 110(3), 346–359
(2008)

4. Lee, C., Rhee, C.E., Lee, H.-J.: Complexity reduction by modi-

fied scale-space construction in sift generation optimized for a

mobile GPU. IEEE Trans. Circuits Syst. Video Technol. 27(10),
2246–2259 (2017)

5. Zhang, Q., Chen, Y., Zhang, Y., Xu, Y.: SIFT implementation

and optimization for multi-core systems. In: 2008. IPDPS 2008.

IEEE International Symposium on Parallel and Distributed Pro-

cessing, pp. 1–8. IEEE (2008)

6. Moren, K., Göhringer, D.: A framework for accelerating local

feature extraction with OpenCL on multi-core CPUs and co-

processors. J. Real-Time Image Process. 10(1007), 1–18 (2016)

7. Zhu, F., Chen, P., Yang, D., Zhang, W., Chen, H., Zang, B.: A

GPU-based high-throughput image retrieval algorithm. In: Pro-

ceedings of the 5th Annual Workshop on General Purpose Pro-

cessing with Graphics Processing Units. ACM30-37, (2012)

8. Yan, W., Shi, X., Yan, X., Wang, L.: Computing OpenSURF on

OpenCL and general purpose GPU. Int. J. Adv. Robot. Syst.

10(10), 375 (2013)

9. Lu, Y., Li, Y., Song, B., Zhang, W., Chen, H., Peng, L.: Paral-

lelizing image feature extraction algorithms on multi-core plat-

forms. J. Parallel Distrib. Comput. 92, 1–14 (2016)

10. Luebke, D.: CUDA: scalable parallel programming for high-

performance scientific computing. In: The 2008 5th IEEE Inter-

national Symposium on Biomedical Imaging: From Nano to

Macro (ISBI 2008). IEEE836-838, (2008)

11. Hwu, W.-M.W.: GPU Computing Gems Emerald Edition. Else-

vier, Amsterdam (2011)

12. Brown, M., Lowe, D. G.: Invariant features from interest point

groups. In: Proceedings of the British Machine Vision Confer-

ence 2002, BMVC, pp. 253–262. (2002)

13. Antonini, M., Barlaud, M., Mathieu, P., Daubechies, I.: Image

coding using wavelet transform. IEEE Trans. Image Process.

1(2), 205–220 (1992)

14. Heymann, S., Muller, K., Smolic, A., Frohlich, B., Wiegand, F.:

SIFT implementation and optimization for general-purpose GPU.

In: Proceedings of the International Conference in Central Europe

on Computer Graphics, Visualization and Computer Vision,

(2007)

15. Sinha, S. N., Frahm, J.-M., Pollefeys, M., Genc, Y.: GPU-based

video feature tracking and matching. In: EDGE, Workshop on

Edge Computing Using New Commodity Architectures, vol. 278,

p. 4321. (2006)

16. Sinha, S., Frahm, J.-M., Pollefeys, M., Genc, Y.: Feature tracking

and matching in video using programmable graphics hardware.

Mach. Vis. Appl. 22(1), 207–217 (2007)

17. Wu, C.: SiftGPU: a GPU implementation of scale invariant fea-

ture transform, https://github.com/pitzer/SiftGPU (2012)

18. Vedaldi, A.: An open implementation of the SIFT detector and

descriptor. UCLA CSD, http://vision.ucla.edu/*vedaldi/code/

sift.html (2007)

0

10

20

30

40

50

60

70

80

90

100

Scale space
construction

interst points
detection

orientation
assignment

description
construction

ac
h

ie
ve

d
 o

cc
u

p
an

cy
 %

stages

PR-SIFT

CUDA-SIFT

SIFT-GPU

PR-SURF

CSURF

Fig. 27 Achieved occupancy of

different parallel

implementations of SIFT and

SURF algorithms, in different

stages of the two algorithms for

GPUs with compute capability

5.9

Journal of Real-Time Image Processing

123

https://github.com/pitzer/SiftGPU
http://vision.ucla.edu/%7evedaldi/code/sift.html
http://vision.ucla.edu/%7evedaldi/code/sift.html

19. Yonglong, Z., Kuizhi, M., Xiang, J., Peixiang, D.: Parallelization

and optimization of sift on GPU using CUDA. In: 2013 IEEE

10th International Conference on High Performance Computing

and Communications, The 2013 IEEE International Conference

on Embedded and Ubiquitous Computing (HPCC_EUC),

IEEE1351-1358, (2013)

20. Mohammadi, M., Rezaeian, M.: Towards affordable computing:

SiftCU a simple but elegant GPU-based implementation of SIFT.

Int. J. Comput. Appl. 90(7), 30–37 (2014)

21. Acharya, K., Babu, R. V., Vadhiyar, S. S: A real-time imple-

mentation of SIFT using GPU. J. Real-Time Image Process. 1–11

(2014). https://doi.org/10.1007/s11554-014-0446-6

22. Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan)

with CUDA. GPU Gems 3(39), 851–876 (2007)

23. Terriberry, T., French, L., Helmsen, J.: GPU accelerating spee-

ded-up robust features. In: Proceedings of 3DPVT. p. 355–362.

(2008)

24. Blelloch, G.: Prefix sums and their applications. In: J.H. Reif (ed).

Synthesis of Parallel Algorithms, Morgan Kaufmann Publishers

Inc. San Francisco, CA, USA (1993)

25. Bilgic, B., Horn, B. K., Masaki, I.: Efficient integral image

computation on the GPU. In: Intelligent Vehicles Symposium

(IV), 2010 IEEE, IEEE528-533, (2010)

26. Fang, Z., Yang, D., Zhang, W., Chen, H., Zang, B.: A compre-

hensive analysis and parallelization of an image retrieval algo-

rithm. In: 2011 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), IEEE154-164,

(2011)

27. Schulz, A., Jung, F., Hartte, S.: CUDA SURF: a real-time

implementation for SURF. https://www.d2.mpi-inf.mpg.de/surf

(2011)

28. Cheon, S., Eom, I.K., Ha, S.W., Moon, Y.H.: An enhanced SURF

algorithm based on new interest point detection procedure and

fast computation technique. J. Real-Time Image Process (2016).

https://doi.org/10.1007/s11554-016-0614-y

29. Hong, S., Kim, H.: An analytical model for a GPU architecture

with memory-level and thread-level parallelism awareness. In:

ACM SIGARCH Computer Architecture News, ACM.37, 3,

pp. 152–163. (2009)

30. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A

Quantitative Approach. Elsevier, Amsterdam (2011)

31. Nvidia: NVIDIA Tesla P100: the most advanced datacenter

accelerator ever built, featuring pascal GP100, the world’s fastest

GPU, In: whitepaper. https://images.nvidia.com/content/pdf/

tesla/whitepaper/pascal-architecture-whitepaper.pdf

32. C. Nvidia: C Programming Guide v9. 1. Nvidia Corporation,

Santa Clara (2017)

33. Barandiaran, I., Cortes, C., Nieto, M., Grana, M., Ruiz, O. E.: A

new evaluation framework and image dataset for keypoint

extraction and feature descriptor matching. In: Proceedings of the

International Conference on Computer Vision Theory and

Applications (VISAPP). vol 1, pp. 252–257. (2013)

34. Mikolajczyk, K., Schmid, C.: A performance evaluation of local

descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10),
1615–1630 (2005)

35. Van Rijsbergen, C.: Information Retrieval. vol 14, Department of

Computer Science, University of glasgow. cite-

seer.ist.psu.edu/vanrijsbergen79information.html (1979)

Ahmed Mehrez obtained his bachelor’s degree from Faculty of

Engineering at Shoubra, Benha University. From 2012 to date, he

works as a Teaching Assistant at Benha University.

Ahmed A. Morgan received the Ph.D. degree from the University of

Victoria, Victoria, BC, Canada, in 2011, and the B.Sc. degree (first

class honors) and the M.Sc. degree from the Faculty of Engineering at

Shoubra, Benha University, Egypt, in 2000 and 2005, respectively.

He is an Assistant Professor in the Department of Computer

Engineering, Cairo University, Egypt. He is currently in a leave at

the college of Computers and Information Systems, Umm Al-Qura

University, Makkah, Saudi Arabia. His research interests include

parallel architectures, multicore systems, digital VLSI design, wire-

less sensor networks, and network-on-chip (NoC) modeling, opti-

mization, and performance evaluation. He has about 25 publications

that span journals, conferences, book chapters, and technical reports.

Dr. Hemayed is currently working as a Professor at Cairo University

and at Zewail City for Science and Technology. He got his Ph.D. from

University of Louisville, KY, in 1999. He got the Graduate Dean’s

Citation Award and the John M. Houchens Prize in recognition of

excellent doctoral dissertation. He got his M.Sc. and his B.Sc. from

Cairo University in 1992 and 1989. From 2007 to 2014, he worked as

an Assistant Professor and then an Associate Professor at Cairo

University. From 2004 to 2007, he worked as an Assistant Professor

at the UAE University. From 1999 to 2005, he was working at

Trendium, Florida. His last position was VP of Technical Services

and Solution Development. He was awarded the year 2005 Trendium

Pioneer. From 1989 to 1994, he worked as a Teaching Assistant at

Cairo University. He is a senior member of IEEE and a member of

ACM and has been a regular reviewer of international conferences

and journals. He has published over 70 papers. His research interest

includes computer vision, machine learning, and big data analytic.

Journal of Real-Time Image Processing

123

https://doi.org/10.1007/s11554-014-0446-6
https://www.d2.mpi-inf.mpg.de/surf
https://doi.org/10.1007/s11554-016-0614-y
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf

	Speeding up spatiotemporal feature extraction using GPU
	Abstract
	Introduction
	Interest point feature extraction algorithms
	SIFT algorithm
	SURF algorithm

	Related work
	SIFT parallel implementations
	SURF parallel implementations

	GPU: model of execution and challenges
	Methodology
	Data preprocessing
	Data preprocessing for SIFT algorithm
	Data preprocessing for SURF algorithm

	Scale space construction
	Scale space construction for SIFT algorithm
	Scale space construction for SURF algorithm

	Interest points detection
	Orientation assignment and descriptor construction

	Experimental results
	Speedup
	SIFT results
	SURF results

	Accuracy
	For SIFT
	For SURF
	Example images

	SM occupancy
	Theoretical occupancy
	Achieved occupancy

	Conclusion and future work
	References

