Journal of Real-Time Image Processing
https://doi.org/10.1007/s11554-018-0755-2

ORIGINAL RESEARCH PAPER

@ CrossMark

Speeding up spatiotemporal feature extraction using GPU
Ahmed Mehrez' - Ahmed A. Morgan®? - Elsayed E. Hemayed?®

Received: 19 July 2017/ Accepted: 16 January 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

Spatiotemporal feature extraction algorithms are widely used in many image processing and computer vision applications.
They are favored because of their robust generated features. However, they have high computational complexity. Paral-
lelizing these algorithms, in order to speed their execution up, is of great importance. In this paper, we propose new parallel
implementations, using GPU computing, for the two most widely used spatiotemporal feature extraction algorithms: scale-
invariant feature transform and speeded up robust features. In our implementations, we solve problems with previous
parallel implementations, such as load imbalance, thread synchronization, and the use of atomic operations. Our imple-
mentations speed up the execution by simultaneously processing all the work of each stage of the two algorithms, without
dividing that stage into smaller sequential ones. The allocation of the threads in our implementations further allows them to
increase the occupancy of the GPU streaming multiprocessors (SMs). We compare our presented implementations to
previous CPU and GPU parallel implementations of the two algorithms. Results show that the proposed implementations
could do all the processing in real time with high accuracy. They further achieve higher speedup, frame rate, and SM

occupancy than the previous best-known parallel implementations of the two algorithms.

Keywords CUDA - Graphics processing unit (GPU) - Image matching - Scale-invariant feature transform (SIFT) -

Speeded up robust features (SURF)

1 Introduction

The robust representation of image features is fundamental
to most machine vision and image registration applications.
Local approaches, which do not require image segmenta-
tion, are proved to be robust to changes that may occur in
images, such as the change in the illumination and the view
angle [1]. According to the changes in the image

< Ahmed Mehrez
ahmed.mehrez @feng.bu.edu.eg

Ahmed A. Morgan
ahmorgan@eng.cu.edu.eg; aamorgan@uqu.edu.sa

Elsayed E. Hemayed
hemayed @ieee.org
Department of Electrical Engineering, Faculty of Engineering

at Shoubra, Benha University, Cairo 11614, Egypt

Department of Computer Engineering, Faculty of
Engineering, Cairo University, Giza 12613, Egypt

College of Computers and Information Systems, Umm Al-
Qura University, Makkah, Saudi Arabia

Published online: 09 February 2018

environment, local feature extraction approaches should
overcome two main challenges. The first challenge is how
to locate regions of the image that have different features
and how to detect these features. The second challenge is
how to describe the detected features in a unique way,
which could be used to find a match with similar features in
other images. Spatiotemporal features are shown to repre-
sent robust ones against the many variations in the image
environment [2]. Accordingly, they become widely used in
most image processing and computer vision applications.

Scale-invariant feature transform (SIFT) [1] and spee-
ded up robust features (SURF) [3] are among the most
robust spatiotemporal local feature extraction algorithms
that are used in many computer vision techniques. For
example, they are used in object recognition and tracking,
image classification, face authentication, and video event
classification. They could overcome illumination, scale,
and rotation variations. SIFT and SURF extract features in
the form of interest points, which represent special points
in the image that could be used in image matching. A
feature vector is created for each point, which describes the
gradients in the region around that point.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-018-0755-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-018-0755-2&domain=pdf
https://doi.org/10.1007/s11554-018-0755-2

Journal of Real-Time Image Processing

The SIFT algorithm uses Gaussian filters with increas-
ing o. As the filter size increases, the required computa-
tions and the execution time of the algorithm increase as
well. This long computational time prevents the sequential
implementation of the SIFT algorithm from being used in
real-time applications. Alternatively, in order to use the
SIFT algorithm in these real-time applications, some
implementations use smaller Gaussian filters [4]. This
unfortunately results in poor-quality interest points. On the
other hand, the SURF algorithm is proposed to overcome
the computational time problem of SIFT. The feature
detection of the SURF algorithm is based on Hessian
matrix and box filters approximation. Therefore, the SURF
algorithm has fixed computational time throughout all
points. In turn, the computation time of the SURF algo-
rithm allows it to detect and describe interest points faster
than SIFT. However, its sequential implementation is still
far from being efficiently used in real-time applications.

In order to enable the use of SIFT and SURF algorithms
in real-time applications, many parallel implementations of
the two algorithms are presented using different hardware
architectures [5-9]. These implementations, which are
surveyed in Sect. 3, managed to provide a good speedup
with respect to sequential implementations of the two
algorithms. Nevertheless, they still have some problems
that should be handled, in order to better enhance the
performance of the two algorithms. First, most of previous
parallel implementations suffer from a load imbalance
problem. In each stage of the two algorithms, the compu-
tations are distributed in an imbalanced fashion over the
processing elements (PEs) of the employed hardware
architecture. Consequently, the heavily loaded PEs would
need more time to finish its work than the less loaded ones.
Indeed, a more balanced distribution of the work would
result in a higher speedup. Second, most of the previous
parallel implementations suffer from a thread synchro-
nization problem. Computations of different stages of the
two algorithms are split into smaller segments, which could
be processed in parallel. However, each segment has to
wait until the previous one finishes. With the aforemen-
tioned load imbalance problem, many PEs are left idle and
the hardware occupancy deteriorates. This, in turn, pre-
vents previous parallel implementations from achieving the
maximum possible speedup. Finally, previous parallel
implementations store interest points in a sequential man-
ner, which depress the overall speedup that could be
achieved by the parallel implementation. In this paper, we
present a new parallel implementation that targets these
problems. In other words, our implementation better han-
dles the load imbalance and the synchronization between
threads. It also increases the GPU occupancy and stores the
detected interest points in a more efficient parallel manner.

@ Springer

Graphics processing units (GPUs) are mainly used for
graphics. In this paper, we target NVIDIA GPUs, and hence,
we would employ its terminology. A GPU consists of tens or
hundreds of scalar processors (SPs) that are grouped to form
streaming multiprocessors (SMs). Therefore, GPUs are
cheap platforms that could result in a significant performance
enhancement, if their parallelism is properly exploited.
NVIDIA further develops CUDA, as a parallel computing
platform, to facilitate the programming of their GPUs. This
motivates many researchers to employ GPUs in speeding up
general-purpose applications [10]. Interested readers would
find dozens of such research work in [11].

The enormous embedded parallelism and the ease of
programming encourage some researchers to speed up
SIFT and SUREF algorithms by using GPUs. Generally, in
order to get the maximum performance from a GPU, its
occupancy should be maximized. In other words, the
number of threads at any time during the execution should
be maximized. This maximization is indeed constrained by
the GPU available resources, like registers and shared
memory. However, previous GPU parallel implementations
of SIFT and SUREF suffer from the same problems that we
mentioned in our previous paragraph. This, in turn, pre-
vents them from reaching the maximum number of threads
and an attainable speedup is therefore lost. In this paper, we
seek this attainable speedup by better increasing the GPU
occupancy. To this end, our contributions are two fold.

(a) Presenting a new GPU parallel implementations of
both SIFT and SURF algorithms. Our implementation
increases the GPU occupancy by minimizing load
imbalance, thread synchronization, and sequential
execution throughout all stages of the two algorithms.

(b) Evaluating the presented solution by comparing it to
the sequential and the best-known parallel imple-
mentations of the two algorithms. Four GPUs and
images of different resolutions and qualities are used
to accurately validate the efficiency of the presented
solution.

The rest of this paper is organized as follows: Sect. 2
explains the sequential implementation and the main stages
of both SIFT and SURF spatiotemporal algorithms. Sec-
tion 3 surveys the related work and discusses previous
parallel implementations of the two algorithms. Section 4
introduces modern GPUs architecture with its basic con-
cepts and terminology. Section 5 presents our methodology
for parallelizing the two algorithms and details our
implementation in different stages of the algorithms. Sec-
tion 6 gives our experimental results and validates our
implementation by comparing it to sequential and other
related parallel algorithms. Finally, Sect. 7 concludes our
work and gives directions for possible future work.

Journal of Real-Time Image Processing

2 Interest point feature extraction
algorithms

In this section, interest point extraction algorithms are
discussed. In any image, edges and corners are the most
likely locations where interest points may be found.
Therefore, the first step in interest point detection is to
identify edges and corners in a given image. Accordingly,
interest points extraction algorithms could be simply con-
sidered as edge or corner detectors.

2.1 SIFT algorithm

The SIFT algorithm consists of four stages: scale space
construction, interest point detection, orientation assign-
ment, and interest point description. The first two stages are
responsible for interest point localization, whereas the
other two stages build the feature vector for the detected
interest points, based on local gradients around these
points.

Stage 1 scale space construction

This stage first constructs all scales in which interest
points could be found. Scales are formed by convolving
the original image by a Gaussian filter with increasing
sigma (o). Scale space consists of a number of octaves
and each octave consists of a number of scales. The first
octave is formed by convolving the original image.
Thereafter, each subsequent octave uses downsampled
images from its predecessor. Finally, the difference of
Gaussians (DOG) is calculated. As shown in Fig. 1, the
difference between each two consecutive layers, in each
octave, constitutes one layer in the DOG.

Stage 2 interest points detection

In this stage, all points, in the DOG, are compared to
their neighbors to detect whether they are local maxima
or not. As shown in Fig. 2, any point is only considered

111 T
/ = i
s /1177

A
HFFTTH - |
i o e o o O 1717
7777
[HHHHHT

Gaussians

i f/

71111111

Difference of Gaussians

Fig. 1 Construction of difference of Gaussians (DOG) images

/ 'f- -/-////
/777

-// //

7
'—// 7 /

//-/-// ///

/
y ,
L / / / I

Fig. 2 Point comparisons to detect maxima of the DOG (gray dots
represent the 26 neighbors of point x)

an interest point if it is a local maximum among its 26
neighbors. Thereafter, points are interpolated to sub-
pixel accuracy. Points with low contrast are removed,
and their responses at edges are eliminated. This method
is developed by Brown and Lowe in [12] and is further
used by D. Lowe in [1]. The extremum, x, which
represents the local maxima, is first calculated according
to (1).

211
=22 (1
where D is the scale space function shifted to the sample
point. D and its derivatives are calculated at the arbitrary
sample point (x, y).
The approximation of the derivatives, D(x), is then
calculated using the difference of neighbors. According
to (2), low-contrast points are removed [1]. A threshold
of 0.03 is used to detect whether any point is of low
contrast or not.

1dD" .

D(x)=D+ T (2)
where D is again the scale space function shifted to the
sample point, D is the function calculated at the offset
from this point, and X is the extremum, as calculated in
(1.

Stage 3 orientation assignment

After detecting interest points in all scales, the SIFT
algorithm tries to detect the orientation of these points,
based on the neighbors’ gradient in the circular region
around them. An orientation histogram is created for
each point with 36 pins. These pins represent the 360° in
the circular region. Gradients of neighbors are then
added to the orientation histogram, after being weighted
with a Gaussian weighted window of width 60, where
o = 1.5 x the scale of the point. Thereafter, the

@ Springer

Journal of Real-Time Image Processing

orientation histogram is checked for the pin with the
maximum value. This pin represents the dominant
direction of the interest point. Therefore, it is assigned
as its orientation. Finally, Lowe states that if another pin
has a value that is more than 80% of the dominant one, it
could be saved as a new interest point, with the same
scale and location, but different orientation [1].

Stage 4 descriptor construction

In this final stage, the SIFT algorithm builds the feature
vector. The feature vector describes the detected interest
points, and hence, it is also called the descriptor vector.
By comparing each interest point to its neighbors, this
vector actually shows the intensity distribution around
this point. For each interest point, a descriptor window
of size 16 x 16 is formed, as shown in Fig. 3. This
window is rotated to the point orientation. Gradients of
other points around the interest point are then calculated.
These gradients are shown as arrows in the small squares
to the left of Fig. 3. Gradients are weighted with a
Gaussian kernel with ¢ = 1.5 x the scale of the point.
Thereafter, the descriptor window is divided into 4 x 4
subregions, which consist of 4 x 4 points. As shown to
the right of Fig. 3, each region creates a histogram of 8
pins to sum the weighted gradients of its points.
Accordingly, 4 x 4 subregions, with 8 pins each, result
in a 128-pin descriptor vector.

2.2 SURF algorithm

The SURF algorithm consists of five main stages. In the
first stage, the integral image is computed from the original
image. In the second stage, the scale space is constructed
by applying an increasing size filter. In the third stage,
interest points are detected. In the fourth stage, the orien-
tation of these interest points is found. Finally, in the fifth

Fig. 3 Descriptor construction in the SIFT algorithm

@ Springer

> 4 AR > 2] IR
EEEELE EEEERE
BN E A E =i Elks
WS AN T 7 |

> o AN 2| 7" > R
< N3 3] v|>{3] < < |)
7132 232 2| A2 2| 2] > >
i/ o AN 7|4 1 BE L J SEILRE
S 2 ARIS] 2l IR 3] 2 AR 2] AR -
EEEEEEEEEEEEEEEE
7| 3 27| 22| 7] 3| > = SE
U H M = 2N o A 7
S d ARIZ| 2 IR 2] 4 7=

< W= 9] <] "= <] W= 3] <

R EEEREEEEREEE
JEELPEERPEERD

stage, the interest points are described. The following
subsections discuss these stages in more detail.

Stage 1 integral image computation

SURF uses integral images to speed up the filters
calculation. The integral image is an image whose points
save the sum of its value and the values of all its upper
left points. Accordingly, the value of each point could be
calculated according to (3).

I(x,y)= > i(x,), (3)
Y <y
X <x

where [is an arbitrary point, located at (x, y), and
i represents points to its upper left, such that x” and y’ are
less than or equal to x’ and y’, respectively. By having
each point accumulating the values of its upper left
points, the summation of any rectangular area of the
integral image could then be calculated by manipulating
values of only four points. These are the points located at
the corners of this rectangular area. Therefore, integral
images reduce the number of computations required to
manipulate any portion of the image to only four [3]. On
the other hand, SURF uses Haar response, which is a
discrete representation of the wavelet changes in the
image [13]. Haar response and gradients of the image are
consequently calculated using box filter approximations.
Box filter approximations represent the second-order
Gaussian derivatives, Dy,, D,,, and D,,, in x-, y-, and xy-
directions, respectively. These approximations depend
on the weighted sum of image portions, which could
easily be calculated using integral images. Figure 4
shows an example of a 9 x 9 box filter. Approximations
of second-order Gaussian derivatives, D, D,,, and D,,,
are shown in sub-figures (a), (b), and (c), respectively.
For example, in sub-figure (a), the filter neglects upper

Journal of Real-Time Image Processing

(a) (b)

(c)

Fig. 4 Weighted box filter approximations, for a 9 x 9 filter

and lower 2 pixels. The summation of middle pixels,
which are colored blue, is weighted by — 2. The sum-
mation of other pixels, which is colored white, is
weighted by 1. The final value is the summation of all
weighted sums.

Stage 2 scale space construction

As in the SIFT algorithm, the scale space is constructed
at many octaves and scales. However, to generate new
scales, SURF uses box filters with an increasing size,
instead of changing the image size in each octave. Filter
sizes increase both within and across octaves. This
finally forms a stack of scales in the image pyramid. As
shown in Fig. 5, the filter size increases from 9 x 9, in
the first scale of the first octave, to 99 x 99, in the last
scale of the third octave [3].

As mentioned in the previous subsection, box filter
approximations result in the second-order Gaussian
derivatives in x-, y-, and xy-directions. Accordingly,
for any arbitrary point, P, located at (x, y), the Hessian
matrix for point P at scale o, H (P,), could be defined
according to (4).

| |27 |e1 [75 |9 |

[15 |27 |39 |51]

Octaves

9 15 21 27

Scales

Fig. 5 Increasing the filter size in the SURF algorithm

H == |:DXX ny:|a (4)
Dy Dyy
where D,,, D,,, and D,, represent the second-order

Gaussian derivatives in the x-, y-, and xy-directions,
respectively. Consequently, for all the scales in the
image pyramid, the determinant of Hessians, Det(H), is
computed for all the points in the input image according
to (5) [3]. Finally, computed determinants are stored in
the form of a pyramid, which is called the response
pyramid array.

Det(H) = DDy, — (0.9 % D,y)*. (5)

Stage 3 interest points detection

SURF uses two steps to detect and localize interest
points. In the first step, weak points, which have no
significant effect on the matching process, are excluded.
Points are compared with a threshold that is assigned by
the algorithm designer. Those points with greater values
are only passed and considered as candidate interest
points. Generally, the higher the threshold value, the
higher the quality of passed points. In the second step,
the location and the scale of these interest points are
found. As in the SIFT algorithm, non-maxima suppres-
sion is then applied. Each point is compared to its
3 x 3 x 3 neighbors to check if it is a local maximum,
and hence, an accepted interest point, or not.

Stage 4 orientation assignment

In order to have rotation-invariant points, descriptors
should be directed to the points’ orientation. Therefore,
for each point, the dominant orientation is calculated
using Haar response filters. Haar wavelet filters are
applied onto the neighbors of the point in a circle of
radius = 6 x the scale of the point. In more detail, for
each neighbor point, Haar wavelet (filters, of
size = 4 x the scale of the point, are applied and then
weighted with a Gaussian filter to form X-Y responses
[3]. To detect the dominant orientation, these responses
are summed using a sliding orientation window of size

@ Springer

Journal of Real-Time Image Processing

7/3 and a step of 0.15. This results in 42 vectors. The
dominant vector is finally assigned as the point
orientation.

Stage 5 descriptor construction

In the SURF algorithm, the descriptor works within a
window of size 20 x 20. The origin of the window is at
the location of the interest point. The window is also
rotated to the interest point orientation. As shown in
Fig. 6, each window is further divided into 4 x 4
subregions, which consist of 5 x 5 points each. Haar
responses are then calculated, weighted, and summed up.
For each subregion, four summations are generated
> dx, > dy, > ldxl, and " ldyl, which represent summa-
tions of responses in x-direction, responses in y-direc-
tion, absolute response values in x-direction, and
absolute response values in y-direction, respectively.
Finally, 4 x 4 subregions, with four summations each,
result in a descriptor vector of 64 features.

3 Related work

In this section, previous parallel implementations of SIFT
and SURF algorithms are discussed. In our survey, we
consider previous work that enhances the runtime of the
two algorithms by using the parallel capabilities of both
GPU and CPU.

3.1 SIFT parallel implementations

S. Heymann et al. presented a parallel implementation of
the SIFT algorithm using GPUs, in [14]. Authors grouped
every 4 pixels in the grayscale to form one RGBA pixel.
Their work depended on two main GPU capabilities, the

dynamic branching and the multiple render targets (MRTs).
For frames of 640 x 480 resolution, their implementation
could process up to 17 frames per second. Authors
achieved a good speedup, but with very low quality interest
points because of grouping 4 pixels in one RGBA pixel.
So, detection of DOG extrema was not handled efficiently.

Sinha et al. [15, 16] also proposed one of the first GPU-
based implementations of SIFT, in a series of publications.
Precisely, authors used the GPU for the scale space con-
struction and the interest point detection stages of the
algorithm. However, the orientation assignment and parts
of the descriptor construction stages were computed using
the CPU. The reported speedup was 8x to 10x, with
respect to the sequential algorithm that was completely run
on the CPU.

Wu presented a parallel implementation, which is called
SIFTPP, of the improved SIFT, in [17]. It was an enhanced
version of SIFT++ sequential implementation by Vedaldi
[18]. The author used CPU and GPU together to detect
interest points and then sent them back to GPU to find the
orientation and build descriptors of these points. Commu-
nication overhead between CPU and GPU to work together
reduced the gained speedup.

In [19], Zhou et al. implemented the SIFT algorithm
using CUDA. They named their implementation CUDA-
SIFT. SMs occupancy was improved by calculating the
maximum number of warps that could be assigned to each
SM. Authors tried to achieve load balancing between
threads by processing scales in parallel. In their experi-
mental work, authors used a tesla GPU, ¢2050, which has
448 CUDA cores running at 1.15 GHZ and a video
memory of 3 GB. The reported SM occupancy was 58%.
Nevertheless, the employed grid architecture and the
method, which was used to simultaneously save the

Fig. 6 Descriptor construction in the SURF algorithm

@ Springer

Journal of Real-Time Image Processing

detected points of all scales, were not discussed in the
paper.

In [20], Mohammadi et al. proposed another GPU-based
parallel implementation of the SIFT algorithm, SIFTCU. In
each scale, the first octave should be solely constructed at
the beginning. Subsequent octaves could then be con-
structed in parallel by subsampling this first octave. In the
detection stage, SIFTCU tried to speed up storing the
detected points onto the interest points array. Accordingly,
points of each scale were written in parallel to certain
designated potions of the interest points array. Once all
scales are finished, a synchronization process is done
between all array portions. The speedup gained from par-
allelizing the writing of the interest points was unfortu-
nately depressed by using atomic add operations. Atomic
add operations actually enforced sequential access to the
shared memory.

In [21], Acharya et al. implemented SIFT-GPU, which
convolved all scales for all octaves at the same time. First,
subsampling was done to generate the first layer in each
octave. Then, all scales were convolved using the same
kernel with one grid. Each block detected its scale and
octave from its location within the grid. The use of a
unified kernel with one grid was only limited to the scale
space construction stage. To speed up the execution, SIFT-
GPU also skipped some parts of the algorithm, like the sub-
pixel localization. This indeed affected the quality of the
detected points. Finally, for 480 x 640 images, the repor-
ted rate was 55 fps.

Parallelizing the SIFT algorithm using multicore CPUs
was proposed by Zhang et al. in [5]. Authors mainly
concentrated in decreasing the synchronization and
enhancing the load balancing between threads. Using a
16-core CPU, the best-reported speedup was 11x. In [6],
Moren et al. presented platform-independent methods to
parallelize the SIFT algorithm on CPUs, GPUs, or
heterogeneous architectures. Therefore, authors used a
pipeline-based strategy to compute different octaves and
to independently calculate DOG layers. In the descriptor
construction stage, they further used the read only mem-
ory instead of registers. Nevertheless, as other previous
parallel implementations, presented methods employed
atomic operations, which depressed some of the gained
speedup. In summary, previous parallel implementations
of the SIFT algorithm either resulted in low-quality
interest points or could not achieve the maximum possible
speedup from the underlying parallel architecture. This is
mainly due to load imbalance, thread synchronization,
and the use of atomic operations. In this paper, we present
better solutions to these problems, which result in higher
speedup, without sacrificing the quality of the generated
interest points.

3.2 SURF parallel implementations

The first stage of the SURF algorithm, i.e., integral image
computation, could be accomplished in parallel using
prefix sum algorithms. In [22], Harris et al. employed the
naive parallel scan to calculate the prefix sum, as shown in
Fig. 7a. In the first iteration, the values of any two one-step
adjacent cells were added together. This step was then
doubled for each subsequent iteration. The problem of
naive scan was that it took too much time to finish all
required additions. Therefore, a work-efficient parallel scan
was presented by Terriberry et al. in [23], based on Blel-
loch algorithm, in [24]. As shown in Fig. 7b and c, the
work-efficient parallel scan consisted of two phases. In the
up-sweep phase, an ordinary binomial summation was
carried out. In the down-sweep phase, the value of the last
cell was first replaced by zero. Throughout iterations, cells
were manipulated in the reverse direction of the up-sweep
phase. Values of associated cells were exchanged together,
and their summation was saved in the cell with the higher
index. In [25], Bilgic et al. used the work-efficient parallel
scan to compute integral images on GPUs. In a nutshell,
each row, or column, was assigned a block to find its prefix
sum.
In [26], Fang et al. analyzed different types of paral-
lelism that could be used with image retrieval algorithms,
like SURF. These types were summarized as follows:

e Pipeline parallelism By making a pipeline of all or
some stages of the algorithm, different images could be
simultaneously processed, but in different stages.

e Scale-level parallelism Computations within the same
scale were done in parallel. However, different scales
were sequentially processed. As the number of cores
increased, authors found that scale-level parallelism
suffered from significant load imbalance and commu-
nication overhead.

e Block-level parallelism An image was partitioned into
blocks and the whole algorithm ran on each block in
parallel. Authors reported that block-level parallelism
outperformed the other two types of parallelism.

Zhu et al. presented a parallel implementation of the
SUREF algorithm, CSUREF, using block-level parallelism, in
[7]. Authors further used a pipeline between the CPU and
the GPU. Each kernel was divided into many smaller ones
to avoid the problem of limited shared memory. Integral
image computation was actually done on the CPU, whereas
interest points detection and descriptor construction were
accomplished on the GPU. CSURF achieved a speedup of
15x the maximally optimized CPU version. However, this
speedup depended mainly on CPU capabilities rather than
GPU capabilities. Similarly, in [27], Schulz et al. employed

@ Springer

Journal of Real-Time Image Processing

Fig. 7 Parallel prefix sum (a)

algorithms: a naive parallel EQ

scan. b Up-sweep phase of the
work-efficient parallel scan.

¢ Down-sweep phase of the | x0 | 2(x0-x1) | E(x1-x2) | fx2-x3) | 2{x3-x4) I{x4-x5) | Z{x5-x6) | Z(x6-x7)
work-efficient parallel scan
B
[%o [2(x0-x1) [3(x0-x2) | 3{x0-x3) [2(x1=x4) 3(x2-X5 [2[x3%6) [3{x4-x7)]
]
——————
| X0 | 5(x0-x1) | 5(x0-x2) | fHx0-x3) | 2{x0-x4) 3(x0-x5) | E(x0-x6) | 5(x0-x7) |
(b)
[X0 | Ex0...x1) | X2 | Z(x0...x3) | X4 [Z(x4...x5) [X6 | 2(x0...x7) |
[X0 [Zx0..x1) [x2 [2(x0...x3) [Xa [Z(x4...x5) [X6 | Z(x4...x7) |
[xo [5(x0...x1) [X2 [Z(x2...x3) [x4 [Z(x4..x5) [X6 [E(x6..x7) |
a
[X0 | X1 [x2 | X3 | xa | X5 | X6 | X7 |
(c)
[X0 [Ex0..x1) [x2 [3(x0...x3) [xa [2(x4..x5) [X6 o |
& o N
[X0 | Ex0...x1) [X2 [0 | x4 [Z(x4..x5) | X6 | 2{x0...x3) |
[x0 |o [x2 [Z(x0...x1) | x4 [2(x0..x3) [X6 [Z(x0...x5) |
[0 >1§J/ [3x0...x1) [3(x0..x2) | z(xn...m.m) [Z(x0...x5) [Z(x0...x6) |

block-level parallelism in their implementation, CUDA-
SURF. CUDA-SURF was built on CUDA 2.3 and OpenCV
2.1.

Lu et al. targeted parallelizing the SURF algorithm
using multicore CPUs, in [9]. Accordingly, authors pro-
posed an adaptive pipeline parallel scheme (AD-PIPE). To
overcome the load imbalance problem, they adjust the
number of threads in each stage according to the workload.
In [28], Cheon et al. proposed an enhanced version of the
sequential SURF algorithm, eSURF. Authors made use of
the repeated scales in many octaves to unify the scale space
construction stage with the detection stage. They further
presented methods to allocate memory efficiently. eSURF
is found to be 30% faster than the original algorithm.

In [8], Yan et al. employed OpenCL to parallelize the
SUREF algorithm, OpenCL SURF. To speed up the execu-
tion, authors used coalesced memory access [29]. They
also processed the detection stage of all octaves in parallel.
However, they saved the detected point using atomic
operations. For 320 x 240 images, a rate of 25 fps and a
maximum speedup of 22.8x the CPU version were
reported.

Like the parallel implementations of the SIFT, those of
the SURF algorithm suffer from the load imbalance and the
use of atomic operations. These enforce the GPU to work

@ Springer

sequentially. This again depresses the speedup that could
be attained from the employed parallel architecture. In this
paper, we tackle these problems by presenting new GPU-
based implementations of both SIFT and SURF algorithms.
Our implementations aim at exploiting the maximum
possible speedup from the employed GPU.

4 GPU: model of execution and challenges

In this section, we introduce basic concepts and definitions
regarding GPUs. Parallelization challenges that prevent
previous implementations from obtaining the maximum
possible speedup are also discussed. From the physical
perspective, a GPU simply consists of an array of SPs that
are grouped to form SMs, an execution manager, and dif-
ferent types of storage modules, like the global memory,
the constant memory, caches, and registers. From the
logical perspective, functions, which are executed on the
GPU, are called kernels. Each kernel constitutes a grid of
blocks. Each block, in turn, is formed from a 1D, 2D, or 3D
array of threads. Once a kernel is invoked, the execution
manager distributes the blocks over the available SMs. In
more detail, consecutive threads are grouped together to
form warps. Warp is a vendor-specific concept, and it

Journal of Real-Time Image Processing

represents the basic unit that could be scheduled by the
execution manager. Only one warp could physically run on
an SM at a time. When a warp executes instructions with
long latency, the SM switches to another ready-to-execute
warp. Therefore, the presence of more warps on an SM
guarantees that it would often find work to do.

GPU is an example of single instruction, multiple data
(SIMD) architecture [30]. All threads within the same grid
process the same instruction, but with different data.
Therefore, these data are first transferred from the main
memory of the computer to the global memory of the GPU
card. Thereafter, they are processed using the GPU parallel
capabilities. GPU cards have a high theoretical bandwidth
with a rate of tens of gigabytes per second. This rate might
also increase to hundreds of gigabytes per second for new
memory and interconnect technologies [31]. However, the
effective bandwidth depends on how memory is actually
accessed. It is known that requesting a number of memory
locations takes less time if these locations are in a con-
secutive order within the memory. A coalesced memory
access is the type of memory accesses in which sequential
memory locations are requested. These requests are coa-
lesced together as a single memory access [29]. Accord-
ingly, if concurrent threads within a warp request
sequential locations from the global memory, only one
coalesced memory access takes place. On the contrary, if
these concurrent threads request sparse and non-adjacent
memory locations, each request is processed separately and
the bandwidth drops significantly. Therefore, a good pro-
gramming practice, in which consecutive threads request
consecutive global memory locations, results in a higher
effective bandwidth.

In order to maximize the performance of the GPU, an
optimal number of threads should be used. This optimal
number is often limited by the resources of each SM, such
as the shared memory and registers. Limitations and fea-
tures of the underlying hardware are abstracted by its
compute capability version. Furthermore, SM occupancy is
defined as the ratio of the actual number of running warps
to the maximum number of warps that could run in that
SM. In order to exploit the maximum performance of the
underlying hardware, SM occupancy should be increased.
One goal of the work presented in this paper is to increase
the SM occupancy for SIFT and SURF parallel imple-
mentations, as much as possible. To achieve this goal, we
consider two SM occupancies: theoretical and runtime. On
the one hand, for any logical organization, the theoretical
SM occupancy could be calculated according to the
employed GPU resources and limitations. On the other
hand, the runtime SM occupancy is measured during the
execution by the help of the underlying hardware and
profiling tools. It represents the average number of active
threads over a certain number of clock cycles, i.e., time.

In order to exploit the maximum performance from a
GPU, concurrent threads should be almost assigned the
same amount of work. This is known as load balance.
Unbalanced distribution of load among threads increases
the necessary time to finish the whole task and reduces the
runtime occupancy. Therefore, balancing the load between
threads is one challenge that, if not realized, would reduce
the performance of GPUs. It also reduces the performance
of previous parallel implementations of the feature
extraction algorithms on GPUs. In the context of SIFT and
SURF algorithms, scale space construction and interest
points detection stages have scales of different dimensions.
One proposal is to use a large fixed-size kernel for all
stages. However, as the execution progresses, the number
of idle threads increases and the optimal load balance could
not be realized. Therefore, in order to reduce the load
imbalance between threads, most previous parallel imple-
mentations sequentially process scales with dimension-
customized independent kernels. However, this technique
has two main drawbacks. First, multiple kernel invocations
result in a significant time loss. Second, as the execution
progresses, small kernels that are solely processed by the
GPU would leave many of the processing elements doing
nothing. Once again, the optimal load balance could not be
reached. In this paper, we try to overcome this challenge by
using one kernel for each stage, rather than for each scale.
Consequently, this allows us to reach a midway between
the too many kernel invocations, on one extreme, and the
significant load imbalance, in the other extreme.

Another challenge that reduces the performance of
GPUs, and previous parallel implementations of the feature
extraction algorithms, is the use of atomic operations.
Atomic operations are used by the GPU to enforce syn-
chronization between threads. They act as semaphores,
when multiple threads try to write to the same location in
the global or shared memory. The location is locked, and
threads are enforced to access it in a sequential manner. As
a result, atomic operations serialize parallel threads and
decrease the speedup that could be gained. Previous par-
allel implementations of SIFT and SURF algorithms use
atomic add instructions to enforce threads to write the
detected points in a unique index. Accordingly, all threads
are queued, waiting its turn to save results. Subsequent
scales could not be manipulated until the current scale is
finished. This indeed slows down the execution of the
interest point detection stage. In this paper, we try to
overcome the atomic operation challenge by presenting a
new algorithm that calculates the required unique memory
index. As there is no need to arrange points while the
detection stage is running, we use one grid of blocks to
detect all points in parallel. We create a global memory
array to write detected points in it and then do some work
to arrange these points with a unique index. Detection stage

@ Springer

Journal of Real-Time Image Processing

is computed in parallel without any serialization, and other
work is responsible for getting unique index using the
prefix sum algorithm.

5 Methodology

In this section, our proposed parallel implementations of
SIFT and SURF algorithms are discussed in detail. First,
we demonstrate the preprocessing that is done for both
SIFT and SURF. Two new algorithms, which speed up the
calculation of the prefix sum for the SURF algorithm, are
presented in Sect. 5.1. Section 5.2 explains our grid orga-
nization to enhance the load balance, in the scale space
construction stage. Our new algorithm that replaces the use
of atomic operations, in the interest points detection stage,
is then proposed in Sect. 5.3. Finally, Sect. 5.4 describes
our implementations of the orientation assignment and the
descriptor construction stages.

5.1 Data preprocessing
5.1.1 Data preprocessing for SIFT algorithm

Subsampling is the preprocessing that is required for the
SIFT algorithm. In the literature, octaves are processed
sequentially such that the first scale of any octave is not
created unless the preceding octave is completely finished.
Contrarily, in our implementation, the original image itself
is subsampled multiple times at the beginning of execution
to simultaneously create the first scale of all octaves.
Thereafter, all scales of all octaves are constructed in

parallel by convolving the already generated first scale in
each octave.

5.1.2 Data preprocessing for SURF algorithm

Computing the integral image is the preprocessing that is
required for the SURF algorithm. We propose two new
parallel algorithms to quickly calculate the integral image.
Each algorithm targets a certain GPU compute capability
version. One algorithm is for compute capability 1.x,
whereas the other is for compute capability 2.x and higher.
In the following paragraphs, the former is named the two-
way algorithm, while the latter is named the one-way
algorithm.

The two-way algorithm is listed in Algorithm 1. It
actually implements the steps that are shown in Fig. 8. Our
two-way algorithm enhances the execution time of the
second phase of the work-efficient parallel scan, which is
discussed in Sect. 3.2. Accordingly, phase 1 is similar to
the up-sweep phase of the work-efficient parallel scan and
an ordinary binomial summation is carried out. Neverthe-
less, as shown in Fig. 8, our implementation of phase 2
starts by dividing the first row into two partitions. The
value of the last cell in the left partition is added to that of
the middle cell in the right one. At each subsequent level,
the partition size is decreased to the half and the process is
repeated. Each level in our implementation requires only
sum operations. Therefore, it takes less time than the wok-
efficient parallel scan, which needs sum and swap opera-
tions in each level.

Algorithm 1 Proposed two-way algorithm for prefix sum computation of n cells

1. i=threadidx;
2. For j=1:log(n) //Phase 1
3. x=n/(2%))

4. Ifix

5 Y=ix(24])
//thread

. Forj=1:log (n)-1 //Phase 2
2=2Aj-1
10. If (i<z)

11. m=n/(2xi)

6
7. end
8
9

//Each thread gets its index
//Calculate the number of working threads (x) at this level
// Calculate the index of the destination cell (y) for this

[yl<=[y] +[y-27(j-1)] //Add values and save the result in the destination cell

//Calculate the number of working threads (z) at this level

//Calculate the index of the source cell at this level (m)

12. [m+(n/4x%j)]<=[m] + [m + (n/4x])] //Add the two values and save the result
//in the destination

13. end

@ Springer

Journal of Real-Time Image Processing

GPUs with compute capability 2.x and higher have the
capability to broadcast and multicast memory addresses.
They could serve multiple read requests by different
threads within the same warp to a certain memory address
without suffering from a shared memory bank conflict. Our
one-way algorithm benefits from this capability. It is listed
in Algorithm 2, and its implementation onto 8§ threads is
shown in Fig. 9. It is named a one-way algorithm because
it only requires one phase to compute the prefix sum. Our
one-way algorithm mixes between the naive parallel scan
and the work-efficient parallel scan, which are discussed in
Sect. 3.2. As shown in Fig. 9, the algorithm starts by
dividing the first row into partitions of two cells. The
partition size doubles at each subsequent level. In each
partition of P cells, the value of cell P/2 is added to that of
all successor cells within its own partition. Needless to say,
by saving the time of the second phase, our one-way
algorithm outperforms both the work-efficient parallel scan
and our proposed two-way algorithm.

(4.m, 21.n/16). It is worth emphasizing that our unified grid
could be used with any image resolution, i.e., any values of
m and n, without exceeding the grid size limitations in
CUDA.

Block-level parallelism, which is discussed in Sect. 3.2,
is used in this stage. Accordingly, an image is partitioned
into rectangular segments. Each block has the responsi-
bility to convolve pixels within one segment. Each pixel
has one thread to serve. Each thread identifies which octave
to serve by its block index in the y-direction and which
scale to serve by its block index in the x-direction. In order
to carry out the convolution process, for a Gaussian filter of
size f, each block needs pixels of its designated segment of
the image plus f/2 pixels in each side. Nevertheless, to
speed up the execution, all threads actually collaborate in
loading these pixels and coalesced memory access, which
is discussed in Sect. 4, is used. Due to the limitations on
the number of registers for compute capability 1.3, block
dimensions of 16 x 8 threads could maximally be used.

Algorithm 2 Proposed one-way algorithm for prefix sum computation of n cells

1. i=threadidx;

2. Forj=1:log(n)

3. p=24

4 z=ceil (2xi/p)

5 s= (2xz-1)xp/2
//to that of the following cells

6. d=i-(z-1)xp/2

7. [d]=[s] + [d]

8. end

//Each thread gets its index

//Calculate the partition size(p) at layer j
//Each thread detects which partition it serves
//Calculate the index (s) of the cell, whose value is added

//Calculate the destination cell index (d) for each thread
//Add the two values and save the result in the destination

5.2 Scale space construction
5.2.1 Scale space construction for SIFT algorithm

As mentioned in Sect. 4, in our implementation, we try to
reach a midway between significant load imbalance and
excessive kernel invocations. Therefore, we carry out all
the computations of the scale space construction using only
one kernel. This results in a unified grid that simultane-
ously manipulates all scales of all octaves. Figure 10 shows
an example of our unified grid for 3 octaves, of 4 scales
each. For an m x n image, the first scale of the first octave
needs m x n threads to process all pixels in parallel. This
results in a total of 4 x m x n threads for the first octave.
Due to subsampling in each subsequent octave, the
required number of threads shrinks to one quarter of that in
the previous octave. Therefore, for 3 octaves of 4 scales
each, the final dimensions of our unified grid would be

For compute capability 2.x and higher, each block consists
of 16 x 16 threads, in order to maximize the SM
occupancy.

After finishing the convolution process, the kernel cal-
culates the DOG using a similar unified grid approach. As
shown in Fig. 11, each block processes the results of the
Gaussian convolution for its scale and the scale after it.
Therefore, collaborative loading and coalesced memory
access are again used in loading scales onto the shared
memory. Thereafter, all blocks calculate the difference
between their two designated scales to construct all DOG
layers in parallel. Finally, DOG results are saved into the
global memory.

5.2.2 Scale space construction for SURF algorithm

Similar to SIFT, we use our unified grid approach in con-
structing the scale space of the SURF algorithm. All

@ Springer

Journal of Real-Time Image Processing

Fig. 8 Explanation of the two-
way algorithm for prefix sum
computation: a phase 1, b phase

2

Fig. 9 Explanation of the one-
way algorithm for prefix sum

computation

Fig. 10 Proposed unified grid

for SIFT scale space
construction

@ Springer

(a)
[x1 [%2 [x3 _ [x4 [x5 [%6 [x7 _ [x8 |
[x1 | E{_;l... x2) [x3]-\z'f:;a.,..x [x5 | I(xS ..x6) [X7 | !{x; :.xS] |
|x1 Ji{xl ... X2) st [I[xi‘f.,xa [xs JI{xS.,.xS} [x:r - [z{x':s'... x8) |
[x1 [3x1..x2) [x3 [Ex1... [x5 [3x5..x6) [%7 : ' [::':}1 ..x8) |
(b)
[xa [3x1..x2) [x3 | 5(x1... ES | 5(x5...x6) [X7 | 5(x1...x8) |
| x1 [5(x1..x2) [x3 [E(x1...> | x5 | i{x‘l .. x6) | x7 | 5x1...x8) |
[x1 (i) [100..3) 5. (3. %5) [Ixl.x6) [30d..X7) |Tod..@]
[xa [x2 [x3 [xa [ES [X6 [x7 [x8 |
ES | 5fx1....x2) | X3 | Z(x3...x4) | X5 | 2(x5...x6) | X7 | 2{x7...x8) |
|x1 |):(x1 . X2) | T(x1..X3) | 3(X1...x4) | X5] 3(x5 ... X6) | 3 (X5 ... X7) iztx\s...xs] |
\\“-..__\ — P'“““-—-_.\\
[x1 [5x1...x2) [3(x1..X3) [3{x1..xd) [3(x1..X5) [3(X1..x6) [3(x1..X7) [3(xI...x8) |
1:t octave 1:octave 1= octave 1t octave [
1=t scale 274 scale 3 scale 4 scale :
2 octave 2 octave 27 octave 27 octave nL
1:tscale 27 scale 3 scale 4% scale
v
r Y
3 octave 3 octave 3 octave 3rd octave
n/16
1stscale 27 scale 3 scale 4% scale
v

Journal of Real-Time Image Processing

1=t octave 1: octave 1:t octave
1t &2 scales 2783w scales 3&4™ scales
27 octave 2 octave 2~ octave

1:t&2nd scales 2rd& 3 scales 3& 4™ scales

3~ octave 3~ octave 3 octave

12 &2 scales 27483~ scales 3784t scales

Fig. 11 Unified grid for DOG calculation

calculations are done in parallel by directly processing the
original image. This is realized by increasing the filter size,
according to the scale. However, our implementation of the
SUREF has two differences from that of the SIFT algorithm.
First, each thread now calculates the Hessian matrix for
one point. Second, the grid size of SURF is different from
that of SIFT. No subsampling is carried out in the SURF
algorithm.