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Abstract—In advanced metering infrastructure (AMI), smart
meters (SMs) are installed at the consumer side to send fine-
grained power consumption readings periodically to the system
operator (SO) for load monitoring, energy management, and
billing. However, fraudulent consumers launch electricity theft
cyber attacks by reporting false readings to reduce their bills
illegally. These attacks do not only cause financial losses but may
also degrade the grid performance because the readings are used
for grid management. To identify these attackers, the existing
schemes employ machine-learning models using the consumers’
fine-grained readings, which violates the consumers’ privacy by
revealing their lifestyle. In this article, we propose an efficient
scheme that enables the SO to detect electricity theft, compute
bills, and monitor load while preserving the consumers’ privacy.
The idea is that SMs encrypt their readings using functional
encryption (FE), and the SO uses the ciphertexts to: 1) compute
the bills following the dynamic pricing approach; 2) monitor the
grid load; and 3) evaluate a machine-learning model to detect
fraudulent consumers, without being able to learn the individ-
ual readings to preserve consumers’ privacy. We adapted an
FE scheme so that the encrypted readings are aggregated for
billing and load monitoring and only the aggregated value is
revealed to the SO. Also, we exploited the inner-product opera-
tions on encrypted readings to evaluate a machine-learning model
to detect fraudulent consumers. The real data set is used to eval-
uate our scheme, and our evaluations indicate that our scheme
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is secure and can detect fraudulent consumers accurately with
low communication and computation overhead.

Index Terms—Dynamic billing, electricity theft detection, func-
tional encryption (FE), machine learning, privacy preservation.

I. INTRODUCTION

SMART grid (SG) is an advanced upgrade to the tradi-
tional power grid that aims to facilitate reliable delivery of

electricity, optimize grid operation, and engage consumers [1].
Fig. 1 illustrates the model structure of the SG, which com-
prises of advanced metering infrastructure (AMI) network,
electricity generation sources, transmission and distribution
systems, and a system operator (SO). AMI enables the bidi-
rectional communication between the smart meters (SMs),
which are deployed at consumer premises, and SO for reg-
ular load monitoring, energy management, and billing [2].
Unlike the traditional power grid that collects the power
consumption readings monthly, the AMI network collects
fine-grained power consumption readings (every few minutes)
measured/sent by SMs [3]. Then, these readings are forwarded
to the SO for monitoring the load, controlling the energy sup-
ply efficiently, and calculating the consumers’ bills. These bills
follow the dynamic pricing approach in which the tariff of
electricity consumption changes through the day to stimulate
consumers to reduce consumption during peak hours [4].

In SG, electricity theft attacks can be launched by fraudulent
consumers who tamper with their SMs so that they report lower
consumption readings to reduce energy bills illegally. This
deceptive behavior does not only cause financial losses, but
also the false readings used for load monitoring may affect the
decisions made by the SO regarding grid management, which
may cause the instability of the grid or blackout in severe
cases [5]. Electricity theft is a serious problem in the existing
power grid that causes hefty financial losses. For instance, the
U.S. loses about $6 billion annually due to electricity thefts [6].
The losses in developing countries also have extremely bad
consequences. For example, India suffers from about $17 billion
losses every year because of electricity theft [7].

In order to identify the fraudulent consumers, machine
learning-based models, which are trained on fine-grained
power consumption readings, have been proposed [7]–[9].
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Fig. 1. Smart grid conceptual architecture.

However, revealing the consumers’ fine-grained power con-
sumption readings to the SO for electricity theft detection, load
monitoring, and billing creates a serious privacy problem. This
is because the fine-grained readings expose the consumers’
life habits, whether they are at home or on-leave, the number
of people at home, the appliances they are using, etc. [10].
This may result in criminal activities, e.g., thieves can break
into homes when consumers are absent [9]. On the other side,
these private data may be sold to insurance companies to adapt
their plans based on the consumers’ activities. In summary, the
research problem we address in this article is how to enable the
SO to monitor load, compute bills, and detect fraudulent con-
sumers without learning the fine-grained power consumption
readings of the consumers to preserve their privacy.

In the literature, the proposed scheme in [11] “PPETD”
tried to address this research problem. It uses a secret-sharing
technique to allow sending the fine-grained power consump-
tion readings in a masked manner in such a way that the
SO can obtain the aggregated readings for billing and load
monitoring without being able to learn the individual readings
to preserve consumer privacy. It also employs a convolu-
tional neural network (CNN) machine learning model based
on secure multiparty computation protocols using arithmetic
and binary circuits. These protocols are executed interactively
by the SO and each SM to evaluate the CNN model on
the reported masked fine-grained power consumption read-
ings without learning the readings to preserve the consumers’
privacy. However, this scheme suffers from the following
issues. The computation and communication overheads are
impractically high since the used cryptosystems need exten-
sive overhead, and the model evaluation is done in an online
and interactive communication session between each SM and
the SO. Furthermore, there is a tradeoff between the model
accuracy and overhead due to: 1) the scheme uses a nonlinear
function (sigmoid function), and because there is no cryp-
tosystem that can evaluate this function on encrypted readings,
it has to be approximated using addition, multiplication, and

comparison operations that can be executed on encrypted read-
ings, i.e., the better the approximation, the less reduction in the
model accuracy, but with more overhead; and 2) more secure
sigmoid evaluations are needed when the model has many
units (i.e., neurons) to achieve high accuracy, which results in
more computation and communication overhead. Moreover,
the classification of the model is known to both SM and SO,
which is supposed to be known only to the SO.

Therefore, in this article, we address these limitations by
proposing a privacy-preserving and efficient electricity theft
detection scheme enabling dynamic billing and load monitor-
ing using functional encryption (FE), named “ETDFE.” The
idea is that the SMs encrypt their fine-grained readings using
the FE scheme and send the ciphertexts to the SO. We adapted
the FE scheme [12] to enable aggregating the SMs’ encrypted
readings, and revealing only the aggregated readings to the
SO for billing and load monitoring without being able to
learn the individual readings to preserve consumers’ privacy.
Furthermore, we train a deep learning-based electricity theft
detection model and leverage the inner product operations on
encrypted data supported by the FE to evaluate the model
using the encrypted fine-grained readings without revealing
the readings to the SO to preserve privacy.

Using the real data set, we evaluated the performance of our
electricity theft detection model. We also analyzed the security
of our scheme and measured the communication and compu-
tation overhead. Our evaluations confirm that our scheme is
secure and can detect electricity thefts accurately with far less
communication and computation overhead comparing to the
scheme proposed in [11]. Specifically, our scheme can signifi-
cantly reduce the computation and communication overheads.
Moreover, unlike [11], our proposed scheme does not need to
involve both SMs and the SO in online/interactive session to
evaluate the electricity theft detection model.

The remainder of this article is organized as follows.
Section II discusses the related works. Then, our system
models and design objectives are discussed in Section III.
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Section IV illustrates the preliminaries used in our work. Our
envisioned ETDFE scheme is presented in Section V. Next, the
performance evaluation and security analysis of our scheme
are discussed in Sections VI and VII, respectively. Finally,
this article is concluded in Section VIII.

II. RELATED WORK

A few works in the literature have tried to
address privacy-preserving electricity theft detection in
SG [11], [13]–[16]. Some schemes are based on machine
learning techniques [11], [14], while others use different
techniques [13], [15], [16].

The work done by Salinas et al. [13], [15] has attempted
to investigate the privacy issue in detecting electricity theft.
They proposed three distributed peer-to-peer (P2P) comput-
ing algorithms based on lower–upper decomposition (LUD)
to preserve privacy. Such algorithms solve a linear system of
equations (LSE) for the consumers’ “honesty coefficients” to
detect fraudulent consumers who commit energy theft. After a
mutual communication between the SMs to solve LSE, the SO
receives the honesty coefficient from each SM. If the honesty
coefficient is equal to one, this consumer is honest, otherwise,
the consumer reported less power consumption. Although this
scheme can successfully identify all the energy thieves in a
small size network, it may be unstable in large networks due
to the rounding errors in LU decomposition. In addition, the
scheme fails if the SMs tamper with the messages sent to
other parties. Furthermore, the power line losses are assumed
to be known, which are difficult to acquire practically. Besides,
this scheme takes into consideration only one type of attack
in which the fraudulent consumers reduce their power con-
sumption reading with constant reduction rates, where the real
consumption readings are multiplied by a constant number that
is less than one. However, there are many other energy theft
scenarios, such as by-pass filters [7]. Finally, the scheme does
not consider load monitoring and dynamic billing.

The electricity theft detection scheme presented in [16] con-
siders consumers’ privacy by using the Kalman filter-based
P2P state estimation protocol to find the line currents and
biases of the consumers. The main idea of this scheme is to use
state estimation techniques by the SO to identify the fraudulent
consumers after receiving estimations of line segment currents
and biases from all SMs. The SMs with biases larger than a
predefined threshold are considered fraudulent. The privacy of
this scheme is guaranteed by employing a distributed Kalman
filter, where the SO does not need to access the consumers’
power consumption readings. However, this work significantly
varies from ours in three perspectives. First, we use a machine
learning model to determine electricity thefts, which usually
performs better than state estimation approaches [7]. Second,
the proposed state estimator is based on a set of distributed
algorithms executed by SMs, and hence, the scheme may fail
if SMs tamper with the messages sent to other peers. Last, our
scheme enables dynamic billing and load monitoring, which
are not considered in [16].

Machine learning-based models have been proposed in [11]
and [14] to identify electricity thefts. A CNN model is used
in [14] to detect fraudulent consumers. In this scheme, SMs

send their encrypted electricity consumption readings to two
system entities. One entity, which is assumed to be fully
trusted, is responsible for running a CNN model (i.e., electric-
ity theft detector) after decrypting the consumer’s fine-grained
readings, and then reports the output of the model to the SO.
Another entity, which is assumed distrusted, aggregates the
consumers’ encrypted power consumption readings in a cer-
tain residential area to obtain the aggregated reading for load
monitoring without being able to learn the individual readings
to preserve privacy. Practically, it is difficult to ensure that an
entity would not abuse consumers’ information; in addition,
this scheme cannot support dynamic billing.

Nabil et al. [11] have proposed a privacy-preserving scheme
that enables the SO to detect fraudulent consumers, who steal
electricity, by developing a CNN machine learning model
based on secure multiparty computation protocols using arith-
metic and binary circuits. These protocols are executed by
the SO and each SM in an online/interactive session to eval-
uate the CNN model using the reported masked fine-grained
power consumption readings. The proposed scheme uses also
a secret-sharing technique to share secrets allowing SMs to
send masked readings to the SO such that these readings can
be aggregated for the purpose of monitoring and billing. The
scheme also enables billing using dynamic pricing rates in
which the tariff of the electricity changes during the day to
stimulate consumers to not use electricity in peak hours to
reduce the demand. However, the scheme suffers from the
following drawbacks.

1) The proposed scheme requires high computation and
communication overhead. The SMs and SO should run
a machine learning model in an interactive way (i.e.,
online) to maintain the consumers’ privacy while allow-
ing the SO to detect whether a consumer is honest or
fraudulent. Furthermore, to evaluate the model for a sin-
gle SM, the total time needed is around 48 min and
the amount of exchanged data is 1900 MB. The scheme
also requires another overhead for running a technique to
share the secrets needed to mask the readings. This large
computation and communication overheads are imprac-
tical for SMs because cost-effective devices tend to
have limited computation capability and low bandwidth
communications.

2) Since a nonlinear function (sigmoid) is used in the
model, and there is no cryptographic technique that
can evaluate the sigmoid function on encrypted data,
the function is approximated by using a piecewise
continuous linear approximation. Note that the main
operations that can be done on encrypted data are addi-
tions, multiplications, and comparison (greater than, less
than, and equal). In particular, a sigmoid function is
split into several intervals, in which a straight line is
used to approximate each interval. As the number of
intervals increases, the function becomes more smooth
and, thus, the approximation becomes more accurate. To
evaluate the sigmoid function on encrypted data, com-
parison operations using garbled circuits are needed to
determine the interval (and thus the straight line) that
should be used, and then addition and multiplication
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Fig. 2. Network model.

operations are used to compute the approximated out-
put of the sigmoid function. Therefore, much more
overhead is needed if the number of intervals is high
because the garbled circuits consume much computa-
tion and communication overhead. Hence, the result of
the sigmoid with linearization is not accurate because of
the loss/error caused by the linearization process. This
results in reducing the accuracy, and creating a trade-
off between overhead and the model accuracy, i.e., the
better the approximation, the higher the model accuracy,
but with more overhead. Furthermore, there is another
source of tradeoff between the model accuracy and over-
head. In PPETD, to obtain a model with high accuracy,
the model should have many units (i.e., neurons), which
requires more secure sigmoid evaluations, and results in
more computation and communication overhead. This
tradeoff will be clarified more in Section VI.

3) The classification of the model is known to both SM and
SO, which is supposed to be known only to the SO. By
knowing the classification of the model, the fraudulent
consumer can return the original software to the SM
before the SO sends technicians to inspect it to avoid
liability.

III. SYSTEM MODELS AND DESIGN OBJECTIVES

This section discusses the considered network and threat
models as well as the design objectives of our scheme.

A. Network Model

As shown in Fig. 2, our considered network model includes
the consumer-side (smart meters), SO-side, and an offline key
distribution center (KDC). The role of each entity is described
as follows.

1) SM: The consumer has smart appliances at his/her
home which are connected to the SM. Each SM sends

its fine-grained power consumption readings periodi-
cally (e.g., every 30 min) to the SO. A set of SMs,
SM = {SMi, 1 ≤ i ≤ |SM|}, form an AMI network.
The SMs can communicate directly with the SO or they
can communicate with the SO via a gateway. In the lat-
ter case, the SMs may communicate directly with the
gateway, or multihop data transmission is used to con-
nect the SMs to the gateway, where some SMs may act
as routers to relay other SMs’ data.

2) SO: The SO uses the fine-grained power consumption
readings sent by SMs for load monitoring and energy
management. Moreover, the SO uses these readings to
evaluate a neural network model to detect electricity
thefts and compute the bill of each consumer following
the dynamic pricing approach in which the electricity
price increases at peak hours to stimulate consumers to
reduce demand in these hours.

3) KDC: It distributes the public parameters in addition
to the private keys, i.e., the encryption and functional
decryption keys for both SMs and SO, respectively. KDC
can be operated by a national authority such as the
Department of Energy.

B. Threat Model

The SO may attempt to use the consumers’ fine-grained
power consumption readings to learn sensitive information
including the consumers’ activities, e.g., learning whether a
consumer is at home or on-leave, and so forth. For consumers,
they may conduct the following misbehavior. First, they may
send to the SO false (low) power consumption readings to
reduce their bills illegally, which does not only cause finan-
cial losses but it may also result in wrong decisions regarding
energy management. Second, the consumers may be interested
in learning the fine-grained power consumption of other con-
sumers to infer sensitive information about the lifestyle of the
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consumers. Regarding collusion, the SO may collude with
consumer(s) to infer the readings of other consumers, but
the number of colluding consumers should be fewer than or
equal (n − 1), where n is the number of SMs. Moreover,
some consumers may collude with others to infer sensitive
information.

Basically, the objective of this article is to preserve the
consumers’ privacy while using their fine-grained power con-
sumption readings for load management, billing, and theft
detection, i.e., no one including the SO shall be able to learn
the fine-grained readings of individual consumers.

C. Design Objectives

Our scheme shall achieve the following functionality and
security requirements.

1) Functionality Requirements:
(F1) In an AMI network, ETDFE shall enable the SO to

obtain the total electricity consumption of the consumers
at each reporting period for load monitoring and energy
management.

(F2) Regarding billing, ETDFE shall allow the SO to com-
pute each consumer’s electricity bill efficiently following
dynamic pricing.

(F3) ETDFE shall allow the SO to run an electricity theft
detector for each consumer using his/her fine-grained
power consumption readings to detect whether this
consumer is fraudulent or not.

2) Security and Privacy Requirements:
(S1) Our electricity theft detector shall be secure against

any misbehavior from fraudulent consumers who aim
at stealing energy without being detected.

(S2) Preserving Consumers’ Privacy: No entity (including
the SO) shall learn the fine-grained power consumption
readings of individual consumers at any reporting period.

(S3) Confidentiality of AMI’s Total Power Consumption and
Consumers’ Bills: SO shall be the only entity that learns
the total power consumption of all consumers in an
AMI for load monitoring and the billing amount of each
consumer as well.

IV. PRELIMINARIES

A. Functional Encryption

FE is a new cryptosystem that allows the encryptor to
encrypt a message x using an encryption key, and enables the
decryptor to perform computations on the encrypted message
to learn the output of a predefined function f (x) using a func-
tional decryption key without being able to learn the message
x itself [17]. Recently, the focus on FE has been increas-
ing, especially how to design efficient schemes for limited
classes of functions or polynomials, such as linear [18], [19]
or quadratic [20]. In this article, we focus on the inner product
FE (IPFE) that allows to perform inner product operation over
encrypted vector. In an IPFE scheme, given the encryption of
a vector x, and a functional decryption key associated with
a vector y, one can obtain only the dot product result (x · y)
by decrypting the encryption of x and without being able to
learn x. IPFE consists of three parties as follows.

Fig. 3. Typical architecture of an FFN.

1) KDC: This generates the encryption and functional
decryption keys for both the encryptor and decryptor,
respectively.

2) Encryptor: It encrypts the plaintext vector x using the
encryption key and sends the ciphertext to the decryptor.

3) Decryptor: It receives a functional decryption key dky

from the KDC, which is associated with a vector y,
and evaluates the dot product on the encrypted vector
received from the encryptor. It has access only to the
result of that dot product evaluation (x·y), and of course,
it must not collude with KDC.

B. Feedforward Neural Networks

Feedforward neural networks (FFNs) are widely used in
solving many challenging machine learning problems, such as
system identification of a biochemical process [21], face recog-
nition system [22], and age identification from voice [23].
This wide adoption of FFNs is due to their high accuracy.
FFNs are called feedforward because the information only
travels forward in the neural network, from the input nodes and
through the hidden layer(s) (single or many layers) and finally
through the output nodes. They are also called deep networks,
multilayer perceptron (MLP), or simply neural networks [24].

Fig. 3 shows a typical architecture of an FFN that consists
of the following.

1) Input Layer: This is the first layer of a neural network.
It consists of nodes, called neurons, that receive input
data and pass them to the following layers. The number
of neurons in the input layer is equal to the number of
attributes or features of the input data.

2) Output Layer: This is the last layer which gives the
prediction (or classification) of the model. The activa-
tion function used in this layer depends on the problem.
For example, in a binary classifier, the output is either 0
or 1 and, thus, a sigmoid activation function is usually
used, while for a multiclass classifier, a softmax function
is commonly used. On the other hand, for a regression
problem, where the output is not a predefined category,
we can simply use a linear activation function.

3) Hidden Layers: Between the input and output layers,
there are hidden layer(s) that depend on the type of the
model, e.g., the hidden layers of a CNN model typ-
ically consist of convolutional layers, pooling layers,
and usually contains a fully connected layer/s at the
end. Hidden layers contain a vast number of neurons
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which apply transformations to the inputs before pass-
ing them. Every neuron in a layer is connected to all the
neurons in the previous layer, and each connection may
have a different strength or weight. When the network
is trained, the weights are computed and updated in
the direction of improving the model accuracy. By hav-
ing multiple hidden layers, we can compute complex
functions by cascading simpler functions. The number
of hidden layers is termed as the depth of the neural
network.

For a given neuron, the inputs are multiplied by the weights
and summed together. This value is referred to as the summed
activation of the neuron. The summed activation is then trans-
formed via an activation function and defines the specific
output or “activation” of that neuron.

In this article, we use the FFN to solve a binary classifi-
cation problem, i.e., to detect whether the consumer is honest
or fraudulent. In machine learning, classification is a type of
supervised learning method, where the task is to divide the
data samples into predefined groups by a decision function. In
the following, we discuss the training process of an FFN and
the widely used activation functions.

1) FFN Training: The features/input data are fed into the
first layer of a neural network (i.e., input layer). Then, these
features are gradually mapped to higher-level abstractions via
the iterative update (also known as, feedforward and back-
propagation) in the hidden layers of the neural network for a
predefined number of iterations. These mapping abstractions,
known as the learned neural network model, can be used to
predict the label in the output layer.

The training of such a network is quite complicated, when
there exists an output error because it is hard to know how
much error comes from the neurons and how to adjust the
weights and biases [25]. Thus, the FFN training involves
adjusting the weight and the bias parameters � by defining
a cost function and selecting an optimizer. The problem can
only be solved by finding the effect of all the weights in the
network. This is done by the backpropagation algorithm [25]
in which the FFN weights are updated using the gradients of
the cost function with respect to the neural network’s weights.
In an FFN, the output values are compared with the correct
values for optimizing the cost function. Then, the error is fed
back through the network to adjust the weights of each con-
nection in order to reduce the cost (loss) function [25]. For
the cost function, categorical cross-entropy C(y, ŷ) is defined
to measure the loss due to the difference of two distributions,
true distribution y and learned distribution ŷ, for M classes as
follows:

C
(
y, ŷ
) = min

�

(

−
M∑

c=1

y(c) log
(
ŷ(c)

)
)

.

During training, an optimization method, e.g., ADAM [26],
is used for optimizing the cost function. Supervised labeled
data are used to train the neural network. In addition, hyperpa-
rameters of the neural network such as the number of neurons
in each layer, the number of layers, and type of the optimizer,

can be determined using hyperopt python library [27], k-fold
cross-validation, or any other validation method [28].

2) Activation Functions: In a neural network, the activation
function is responsible for transforming the summed weighted
input from the neuron into the activation of that neuron. In the
following, we explain some common activation functions and
their usage.

1) Rectified Linear Unit (ReLU): It allows positive values
to pass through it, and maps negative values to zero. The
main advantage of ReLU is the computational simplic-
ity because it only requires a simple max() function as
follows [29]:

ReLU(x) = max(0, x).

Unlike the tanh and sigmoid activation functions that use
exponential operations, ReLU mostly acts like a linear
activation function, and it is usually easier to optimize
the neural network when its behavior is linear or close
to linear.

2) Softmax: It is often used in the output layer for multi-
class classification problems. Softmax outputs a proba-
bility vector for a given input vector, i.e., for an input
vector z = [z[1], . . . , z[M]] ∈ R

M of length M, where M
is the number of classes, the softmax function is defined
as follows [29]:

Softmax(z[i]) = ez[i]

∑M
j=1 ez[j]

for i = {1, . . . , M}.

V. PROPOSED SCHEME

In this section, we first give an overview for the proposed
ETDFE and then discuss system initialization, how SMs report
their power consumption readings, and how the SO com-
putes the aggregated readings for load monitoring. Next, we
explain how the electricity bills are computed following the
dynamic pricing approach. Finally, we explain the way we
train a machine learning model for electricity theft detection
and discuss how the SO can use the SMs’ encrypted read-
ings to evaluate the model to detect electricity theft without
learning the readings to preserve the consumers’ privacy.

A. Overview

The main phases of our scheme can be summarized as
follows.

1) Using an FE scheme, each SMi ∈ SM sends its
encrypted reading Ci[t] periodically to the SO using the
secret key si every time slot Tt as shown in Fig. 4.

2) At every time slot Tt, the SO receives all encrypted
readings Ci[t], where {1 ≤ i ≤ |SM|}, from all
SMs and uses the monitoring functional decryption key
dkm to obtain the aggregated reading of SMs (i.e.,
dkm([C1[t], . . . , C|SM|[t]]) = ∑|SM|

i=1 ri[t], where ri[t] is
the consumption reading of SMi at time slot Tt) in an
AMI network for load monitoring without being able
to learn the individual readings to preserve consumers’
privacy.

3) Regarding billing, as shown in Fig. 4, after receiving
b encrypted readings from each SM, which represent
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Fig. 4. Monitoring, billing, and electricity theft detection intervals.

the readings per billing period TB, the SO applies
dynamic pricing on these readings to compute the bill
for each consumer i using the billing functional decryp-
tion key DKbi without learning the individual readings
to preserve privacy, where DKbi([Ci[1], . . . , Ci[b]]) =∑b

t=1 y2[t]ri[t], where y2[t] is the pricing rate at time
slot Tt.

4) After receiving d encrypted readings from the SMs,
which represent the readings per electricity theft detec-
tion period TD, the SO uses the functional decryption
key DKdi of each SMi to evaluate an electricity theft
machine learning model to detect whether this consumer
is honest or fraudulent without learning the readings to
preserve privacy.

For better readability, we define the main notations used in
this section in Table I.

B. System Initialization

In system initialization,1 the KDC2 should compute and dis-
tribute the following: 1) public parameters; 2) SMs’ encryption
keys; and 3) SO’s functional decryption keys.

1) Public Parameters: To generate the public parameters,
the KDC should:

1) generate {G, q, P} where G is a cyclic additive group of
prime order q and generator P;

2) choose H, where H is a full-domain hash function onto
G

2, i.e., H : {0, 1}∗ → G
2.

Then, the public parameters {G, q, P,H} are published.
2) Smart Meters’ Encryption Keys: KDC generates SMs’

encryption keys: si ∈ Z
2
q, where si is the secret key of SMi,

for 1 ≤ i ≤ |SM|, and |SM| denotes the number of SMs in an
AMI network.

1We use the standard lowercase notation for elements in Zq and uppercase
notation for elements in G.

2KDC is needed only to bootstrap the system by distributing the necessary
keys. After that, the system is run without involving it.

TABLE I
MAIN NOTATIONS

3) SO’s Functional Decryption Keys: dkm, DKb, and DKd

are the functional decryption keys set used for monitoring,
billing, and electricity theft detection, respectively. The KDC
generates these functional decryption keys as follows.
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1) Generating dkm: A vector of ones, y1, with a length that
equals to the number of SMs in an AMI network, is
used by the KDC to compute the monitoring functional
decryption key dkm. This key is sent to the SO such
that it can aggregate all the power consumption readings
from all SMs at each time slot Tt. This vector of ones
is used so that when the inner product is done with the
SMs’ readings, the aggregated reading is obtained. The
generation of dkm key is as follows.

a) The KDC performs the following operation to
compute the monitoring functional decryption key
using the SMs’ secret keys and y1:

dkm =
|SM|∑

i=1

siy1[i] =
|SM|∑

i=1

si ∈ Z
2
q

where y1[i] is the ith element in y1. Then, the KDC
sends the dkm to the SO.

2) Generating DKb: The SO sends a vector y2, with a
length b, to the KDC, where b is the number of read-
ings per billing period TB as shown in Fig. 4. This
vector represents the pricing rates the SO sets, and it
is used for billing following dynamic pricing approach,
i.e., each element in y2 is the electricity rate for one
consumption time slot. This allows the SO to com-
pute the inner product operation between y2 and the
power consumption of each consumer at different time
slots. Using y2, the KDC generates a billing functional
decryption key for each SMi for each billing period
as follows.

a) The KDC calculates the following operations for
each SMi using the SMi’s secret key, y2, and a set
of time slot identifiers {�1, �2, . . . , �b}, as follows:

U�t = H(�t) ∈ G
2, 1 ≤ t ≤ b

DKbi =
b∑

t=1

y2[t]
(

s�
i · U�t

)
∈ G

where (·) is the inner/dot product operation
between two vectors, and s�

i is the transpose of si.
b) Next, the KDC sends the |SM| billing functional

decryption keys DKbi to the SO, where {1 ≤ i ≤
|SM|} and |SM| is the number of SMs.

3) Generating DKd: Regarding the evaluation of the elec-
tricity theft detection model at the SO-side, the SO sends
the first layer’s weights of the model (W) to the KDC.
Supposing that W’s dimension is d rows × n columns,
where d is the number of readings per electricity theft
detection period TD = {T1, T2, . . . , TD}, while n is the
number of neurons in the first hidden layer in the model.
Then, W can be represented as

W =

⎡

⎢⎢⎢⎢
⎣

w1[1] w2[1] . . . wn[1]
w1[2] w2[2] . . . wn[2]

. . . . . .

. . . . . .

w1[d] w2[d] . . . wn[d]

⎤

⎥⎥⎥⎥
⎦

(1)

where W is a 2-D array and can be represented as
W = [w1

�, w2
�, . . . , wn

�], wi is the ith column of W,

wi = [wi[1], wi[2], . . . , wi[d]]� and wi ∈ Z
d
q. Therefore,

the KDC generates n functional decryption keys cor-
responding to each column of W. In our solution, W
is the same for all SMs, i.e., the SO applies a gen-
eral model to all SMs. Next, the KDC calculates the
electricity theft detection functional decryption keys
for each SM for each electricity theft detection period
as follows.

a) For each SMi, the KDC performs the following
operation using the SMi’s secret key, a set of time
slot identifiers {�1, �2, . . . , �d}, and each column j
of W, where j = {1, . . . , n}

U�t = H(�t) ∈ G
2, 1 ≤ t ≤ d

Ddji =
d∑

t=1

wj[t](s�
i · U�t) ∈ G.

b) Next, the KDC sends the n electricity theft detec-
tion functional decryption keys to the SO for
each SMi

DKdi = {
Ddji

}
∀j.

C. Reporting Fine-Grained Power Consumption Readings

The consumers’ fine-grained electricity consumption read-
ings are encrypted by using secret keys sent by the KDC. The
SMs transmit the encrypted readings periodically to the SO
for load monitoring, billing, and electricity theft detection. For
each reporting period Tt, each SMi ∈ SM generates a power
consumption report by executing the following operations.

1) Each SMi uses its encryption key si and the time slot
identifier �t to encrypt its reading ri[t] in time slot Tt as
follows:

Ci[t] =
(

s�
i · U�t

)
+ ri[t]P ∈ G (2)

where U�t = H(�t) ∈ G
2.

D. Aggregating Fine-Grained Power Consumption Readings
for Monitoring

After collecting all the SMs’ encrypted readings (ct) at
reporting period Tt, where ct = [C1[t], C2[t], . . . , C|SM|[t]],
the SO uses the monitoring functional decryption key dkm
to obtain the total aggregated reading for load monitoring by
performing the following steps.

1) Given the functional decryption key dkm and ciphertexts
ct, the SO can compute

U�t = H(�t) ∈ G
2.

2) Next, the SO computes

|SM|∑

i=1

Ci[t] − U�
�t dkm

=
|SM|∑

i=1

((
s�

i · U�t

)
+ ri[t]P

)
−
⎛

⎝
|SM|∑

i=1

si

⎞

⎠

�
U�t
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=
⎛

⎝
|SM|∑

i=1

si

⎞

⎠

�
U�t +

|SM|∑

i=1

ri[t]P −
⎛

⎝
|SM|∑

i=1

si

⎞

⎠

�
U�t

=
⎛

⎝
|SM|∑

i=1

ri[t]

⎞

⎠P ∈ G. (3)

3) Finally, the SO uses an approach to compute a discrete
logarithm to obtain

|SM|∑

i=1

ri[t].

In this case, the discrete logarithm is not a difficult problem
because (

∑|SM|
i=1 ri[t]) is not a large value. While many meth-

ods have been introduced to compute the discrete logarithm
such as Shank’s baby-step giant-step algorithm [30], we
resorted to using a lookup table to compute it efficiently in
a lightweight manner.

By performing the above steps, the result (
∑|SM|

i=1 ri[t]) is the
summation of the power consumption readings of all SMs at
each time slot Tt. Therefore, ETDFE can achieve the functional
requirement (F1) of reporting aggregated power consumption
reading for load monitoring by the SO without being able to
learn the individual readings to preserve consumers’ privacy.

Besides the aforementioned steps, the SO should store the
ciphertexts of each SMi in vector cB

i for calculating bills over
each billing interval TB as will be explained in Section V-E,
where cB

i is

cB
i = [Ci[1], . . . , Ci[b]]�.

Also, the SO should store the reports of each SMi over
electricity theft detection interval TD in vector cD

i to be applied
to the electricity theft detector, at the end of each electricity
theft detection interval, as will be explained in Section V-F3,
where cD

i is defined as follows:

cD
i = [Ci[1], . . . , Ci[d]]�.

E. Bill Computation Using Dynamic Pricing

In addition to using the fine-grained power consumption
readings in load monitoring and energy management, they
are also used to compute bills following dynamic pricing in
which the electricity tariffs are higher in the peak-load periods
to stimulate consumers to shift their consumption to off-peak
hours to balance electricity supply and demand. In this section,
we explain how the SO uses the encrypted power consump-
tion readings to compute bills following a dynamic pricing
approach.

After collecting b encrypted readings (cB
i vector) from each

SMi, {1 ≤ i ≤ |SM|}, the SO computes the bill at the end of
each billing interval by using the billing functional decryption
key DKbi by calculating

b∑

t=1

y2[t]Ci[t] − DKbi

=
b∑

t=1

y2[t]
((

s�
i · U�t

)
+ ri[t]P

)
−

b∑

t=1

y2[t]
(

s�
i · U�t

)

=
b∑

t=1

y2[t]
(

s�
i · U�t

)
+

b∑

t=1

y2[t]ri[t]P −
b∑

t=1

y2[t]
(

s�
i · U�t

)

=
(

b∑

t=1

y2[t]ri[t]

)

P. (4)

Hence, the SO uses an approach to compute a discrete
logarithm to obtain

b∑

t=1

y2[t]ri[t].

This is the inner product of the SMi’s power consump-
tion readings and the pricing rates’ vector (y2), which is
equivalent to the weighted summation of the power consump-
tion readings. Therefore, ETDFE can achieve the functionality
requirement (F2) of computing each consumer’s bill following
dynamic prices.

F. Electricity Theft Detection

In this section, the data set used for training the electricity
theft detection model is presented, then we explain how we
train the model as well as its architecture, and finally, we dis-
cuss how the SO can detect electricity thefts without violating
the consumers’ privacy, i.e., without learning the fine-grained
power consumption readings.

1) Data Set: A real SM data set from the Irish Smart
Energy Trials [31] is used for training and evaluating our elec-
tricity theft detector. This data set was produced in January
2012 by the Electric Ireland and Sustainable Energy Authority
of Ireland. It contains electricity consumption readings for
more than 1000 consumers over 536 days from 2009 to 2010,
in which an electricity consumption reading is reported by
each SM every 30 min. In our experiment, we used the elec-
tricity consumption readings for |SM| = 200 SMs from the
data set. By preprocessing this data, we build 107 200 records,
where each record corresponds to readings of one SM in a
single day (i.e., 48 readings). We define a set ri of electricity
consumption readings (i.e., a record) that are reported by SMi

in each day. We assume that each electricity theft detection
interval is one day, so the input size of our FFN (d) is 48.

Electricity Theft Attacks: All the readings in the data set are
for honest consumers. Although we need to train our model
using both honest and malicious data, it is difficult to col-
lect false readings sent by fraudulent consumers. To solve this
problem, we created malicious data set by using a set of elec-
tricity theft attacks which are presented in [7]. We considered
three types of attacks: 1) by-pass filters; 2) partial reduction;
and 3) price-based load control, as summarized in Table II. For
each day, ri[j] denotes the jth electricity reading of SMi. As
can be seen in Table II, each function f (·) aims at reducing the
power consumption reading ri[j] by applying different attack
scenarios. The first attack’s objective, i.e., f1(·), is to reduce
ri[j] by a flat reduction ratio α, where 0 < α < 1, while the
attack f2(·) dynamically reduces the reading ri[j] by a value
controlled by the time β[j], where 0 < β[j] < 1. The third
attack f3(·) reports the predicted value (mean value) E[ri] of a
fraudulent consumer’s power consumption readings for a given
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TABLE II
CYBER ATTACKS IN JOKAR et al. 2016 [7]

day. On the other hand, the fourth attack f4(·) is a by-pass
attack, in which the fraudulent consumer sends zero readings
during a certain interval (i.e., [ts, tf ]), otherwise, it reports the
actual consumption reading ri[j], where ts and tf are the start
and end of the electricity theft interval, respectively. Similar
to the attack f3(·), the attack f5(·) also uses the predicted value
(mean value) E[ri] of a fraudulent consumer’s power consump-
tion readings for a given day. But the difference between them
is that the readings are reduced dynamically from time to time
using β[j] in f5(·), where 0 < β[j] < 1, while the fraudulent
consumer who launch f3(·) reports a fixed value during the
day. Finally, the attack f6(·) is comparatively smart in reduc-
ing the electricity bill as it does not change the actual readings
during the day but it reports the higher energy consumption
readings during low tariff periods.

Data Preprocessing: To apply the aforementioned attacks
to produce malicious readings, we first set the parameters of
each function. For functions f1(·), f2(·), and f5(·), α and β[j]
are random variables that are uniformly distributed over the
interval [0.1, 0.6] [7], while ts, in f4(·), is a uniform random
variable in [0, 42], and the period of the attack, i.e., tf − ts, is a
uniform random variable in [6, 48], and hence, the maximum
value of tf = 48. Hence, by applying these attacks on the
readings of each SM, the corresponding records for each SM
now contain 536 honest records (for daily readings) and 3216
malicious records (i.e., 6 attacks × 536). As a result, the data
set is imbalanced because the malicious data is more than the
honest data.

We tackle the problem of imbalanced data by using the
adaptive synthetic sampling approach (ADASYN) [32] for
each SM’s records to balance the size of honest and mali-
cious classes. Thus, each SM has 6432 honest and malicious
records, where each record contains 48 electricity consumption
readings. Consequently, the total number of records for 200
SMs in our data set is around 1.2 million. Each SM’s records
are divided into two data sets for training and testing with the
ratio of 4:1. The training data sets are combined together from
all SMs to form X̂TR of size about 1 million records. Similarly,
the test data sets are combined together from all SMs to form
a test data set of size 257 241 records. Training a model on
a variety of synthetic attacks’ records along with a real data
set [31] helps in improving the model detection rate (DR).

2) Electricity Theft Detection Model: In FFN, the input
vector is multiplied by a matrix of weights, and this can be
done by the inner product operations. As a result, we leverage

TABLE III
FFN MODEL USED IN ETDFE, WHERE AF STANDS FOR THE

ACTIVATION FUNCTION, AND hi IS THE iTH HIDDEN LAYER

the inner product operations on encrypted data supported by
the FE to evaluate the model using the encrypted fine-grained
readings without revealing the readings to the SO to preserve
consumers’ privacy. On the other hand, a CNN model has
a convolution layer which consists of a set of independent
filters and max-pooling layers. The convolution operation is
done by sliding each filter over the input, and doing inner
product operations between the filter and chunks of the input.
In order to achieve high accuracy, the CNN model should
have a high number of filters, and this is not efficient to be
computed using FE because many keys and high computa-
tion/communication overhead are needed to perform the inner
product operations. To conclude, the selection of the machine
learning model is constrained by the available cryptosystem
and our choice of using the FFN with FE was based on the
fact that the operations done in FFN are supported by FE over
encrypted data.

We train a fully connected multilayer FFN network, i.e.,
electricity theft detector, with a softmax output layer on X̂TR.
While training the model, �2-regularization is used to limit
overfitting, and we adjust the hyperparmeters of our FFN
model using hyperopt tool [27] on a validation data set to
tune the number of neurons in each hidden layer, and select
activation function for each layer, batch size, and learning rate.
Using this tool, we can define the hyperparameter ranges to
tune in our model; in addition, we can specify which model
metric, e.g., accuracy, should be optimized while tuning the
model’s hyperparameters. Then, our model is evaluated on the
test data set. In the training phase, the Adam optimizer is
used to train the model for 60 epochs, 250 batch size, 0.0001
learning rate, and categorical cross entropy as the loss func-
tion. To train our model, we used Python3 libraries, such as
Scikit-learn [33], Numpy, TensorFlow [34], and Keras [35],
which are installed on a high-performance cluster (HPC) of
the Tennessee Tech University using one NVIDIA Tesla K80
GPUs. Table III gives the detailed structure of our electricity
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Fig. 5. Illustration of the encrypted and nonencrypted parts of the proposed theft detection model.

theft detection model, including the number of layers, the
number of neurons, and activation functions.

3) Privacy-Preserving Evaluation of Theft Detection
Model: To enable the SO to evaluate the model we trained
without learning the readings to preserve the consumers’ pri-
vacy, we leverage the inner product operation of FE. As shown
in Fig. 5, only the operations of the first layer of our model
architecture are executed using the encrypted data. The result
is known to the SO to use in the operations of the next layer.
Generally, the main operation needed by a neural network’s
feedforward layers can be expressed by z = rW +v where r is
the previous layer input vector, W is the weight matrix, and v
is the bias vector. In our FFN model, the weight matrix of the
first layer W has dimension (d×n) as shown in (1), where d is
the number of input neurons (features), and n is the number of
neurons in the first hidden layer. In our model, the operation
(rW +v) is performed by multiplying the input vector with W,
and then the result is added to the bias vector v. This results
in n components that are the output of the first hidden layer,
which is equivalent to n inner product operations between the
input and each column in the weight matrix W. Therefore, to
preserve the consumers’ privacy, we leverage IPFE to do inner
product operation on encrypted vectors to obtain the output of
the first hidden layer which is

riW + v

where ri is the input (power consumption readings) of the SMi

over TD, and it can be represented as [ri[1], ri[2], . . . , ri[d]],
while v is the bias vector of size n.

After collecting d encrypted readings (cD
i vector) from

each {SMi, 1 ≤ i ≤ |SM|}, the SO runs the electricity theft
detector by using the functional decryption key DKdi cor-
responding to SMi to detect whether consumer i is honest
or fraudulent. The n columns of W can be represented as
[w1

�, w2
�, . . . , wn

�], where wi is the ith column of W, and

wi = [wi[1], wi[2], . . . , wi[d]]� ∈ Z
d
q. The evaluation of the

electricity theft detection model is done as follows.
1) Given the functional decryption key DKdi and cipher-

texts cD
i from each SMi at the end of each electricity

theft detection period TD, the SO can compute the inner
product between SMi’s ciphertexts cD

i and each column
of W by performing the following steps:

d∑

t=1

wj[t]Ci[t] − Ddji

=
d∑

t=1

wj[t]
((

s�
i · U�t

)
+ ri[t]P

)
−

d∑

t=1

wj[t]
(

s�
i · U�t

)

=
d∑

t=1

wj[t]
(

s�
i · U�t

)
+

d∑

t=1

wj[t]ri[t]P

−
d∑

t=1

wj[t]
(

s�
i · U�t

)
=
(

d∑

t=1

wj[t]ri[t]

)

P. (5)

2) These equations are computed for j = 1, 2, . . . , n. The
SO uses an approach to compute a discrete logarithm to
obtain

d∑

t=1

wj[t]ri[t].

3) The results are in the clear form. Then, the SO adds
them to the bias v of the first hidden layer to obtain the
output of the first hidden layer of the electricity theft
detector as follows:

[(
ri · w1

�)+ v[1],
(

ri · w2
�)+ v[2], . . .

(
ri · wn

�)+ v[n]
]
.

Then, the output of the first hidden layer is the input to
the next layer of the model and the operations of next
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TABLE IV
PERFORMANCE OF ETDFE AND OTHER SCHEMES IN THE LITERATURE

layers are completed until the calculations are done in
the last layer and the classification result is obtained.

Note that the number of neurons in the first hidden layer
should be fewer than the number of inputs (i.e., n < d) because
if n ≥ d, the SO may obtain the fine-grained readings, since d
unknowns in d equations may be solved to obtain the readings.

Therefore, the FFN model is evaluated securely by the
SO at the end of each electricity theft detection interval
without learning the consumption readings to preserve the
consumers’ privacy. Therefore, ETDFE can achieve the func-
tionality requirement (F3) of privacy-preserving electricity
theft detection.

VI. PERFORMANCE EVALUATION

In this section, we first evaluate the performance of the elec-
tricity theft detection model, and then assess our scheme in
terms of communication and computation overhead.

A. Electricity Theft Detection

Performance Metrics: In order to evaluate our scheme’s
performance, we considered the following metrics. The DR
measures the percentage of fraudulent consumers that are
detected correctly. The false acceptance rate (FA) measures the
percentage of the honest consumers that are falsely recognized
as fraudulent. The highest difference (HD) is the difference
between DR and FA. The accuracy measures the percentage
of honest/fraudulent consumers that are correctly detected as
honest/fraudulent. The model performance is better when DR,
HD, and accuracy are high, and FA is low

DR = TP

TP + FN
, FA = FP

TN + FP

HD = DR − FA, Accuracy = TP + TN

TN + TP + FP + FN

where, TP, TN, FN, and FP stand for true positive, true
negative, false negative, and false positive, respectively.

Results and Discussion: We have evaluated our model using
the confusion matrix which is imported from Scikit-learn
python library [33]. Our baseline is the plaintext FFN model
(without privacy preservation), and we also compare it with
our privacy-preserving model. We compare our results with
the proposed scheme in [7] and the three models proposed
in PPETD [11], which are MD1 with “28 CNN filters, one
stride size, six units filter size, and 2048 hidden units”; MD2
with “256 CNN filters, one stride size, five units filter size,
and 1536 hidden units”; and MD3 with “64 CNN filters, one
stride size, five units filter size, and 1536 hidden units.”

The main contribution of this article is reducing the high
computation and communication overhead in [11], while
achieving comparable model accuracy, as can be seen in
Table IV. Table IV gives the evaluation results of our model
and the existing models in the literature with and without pri-
vacy preservation. Considering privacy-preserving electricity
theft detection, our scheme ETDFE offers higher accuracy and
DR, 93.36% and 92.56%, respectively, compared to PPETD
MD1 [11] which has 91.8% accuracy and 91.5% DR. While
PPETD MD3 [11] has the lowest FA which equals to 3.9%,
its DR and accuracy are limited to 88.6% and 90.3%, respec-
tively. The FA in ETDFE is 5.84%; however, it has higher
DR and accuracy which equal to 92.56% and 93.36%, respec-
tively. Hence, our model achieves higher HD (i.e., 86.72%)
compared to the HD of PPETD MD3 with 84.6%, as can be
seen in Table IV.

On the other hand, compared to the detector in [7], our
scheme offers higher HD, i.e., 86.72%, compared to 83%
in [7]. This is because the detector in [7] is based on a
shallow machine learning architecture [i.e., support vector
machine (SVM)], while our model is based on deep learning
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architecture that can better capture the correlation among the
input data. Moreover, our proposal is robust against contam-
ination attacks, where the customer data that is used to train
the detector may be already malicious yet falsely labeled as
benign, and by this way, malicious consumers may not be
detected. This is because the model in [7] is customized (i.e.,
one model for each consumer), but our model is general (i.e.,
one model for all consumers) that does not rely on specific
consumer’s data, and can be applied to new consumers who
have no history of power consumption.

In addition, Fig. 6 shows the receiver operating characteristics
(ROC) curves for our model with and without privacy preserva-
tion. The ROC curve is often used to evaluate the classification
accuracy, which is measured by the area under the ROC curve
(AUC). This area indicates how much the model can distinguish
between the classes, where a higher AUC represents a better
performance. Furthermore, the given results in Table IV indicate
that the overall accuracy of our model does not degrade when
using our privacy-preserving evaluation technique because the
result of the inner product of the encrypted vectors using FE is
similar to the result of the inner product of the plaintext vectors.
This is different from the proposed scheme in [11] that suffers
from accuracy reduction when considering privacy preserva-
tion. This reduction occurs because there is no cryptosystem
that can evaluate a sigmoid function on encrypted readings,
and thus the function is approximated as a linear function. In
addition, Table IV demonstrates also the tradeoff between the
model accuracy and overhead. In PPETD, to create a model
with high accuracy, the model should have many units (i.e.,
neurons), which requires more secure sigmoid evaluations, and
results in more computation and communication overhead. For
instance, the PPETD MD2 model has 1536 neurons which is
lower than the number of neurons of MD1 that is 2048 neu-
rons. As shown in Table IV, MD1 has more accuracy and DR
than those of MD2, but with significantly higher computation/
communication overhead.

B. Computation and Communication Overhead

Our scheme is implemented using Python “Charm” crypto-
graphic library [36] running on a Raspberry Pi 3 device with
1.2-GHz Processor and 1-GB RAM. We used elliptic curve of
size 160 b (MNT159 curve).

1) Computation Overhead: To evaluate ETDFE, we com-
pare our scheme’s computation overhead with the one
presented in [11] for load monitoring, billing, and electricity
theft detection. For power consumption reporting, the SMs’
computation overhead needed to encrypt the power consump-
tion reading by using (2) is 0.009 ms, compared to 0.35 ms in
PPETD [11]. The results confirm that the computation over-
head on the SMs is low which is important because the SMs
are resource-constrained devices. On the other hand, the over-
head of aggregating 200 readings by the SO is 47.2 μs using
our scheme, while it is 0.071 μs in PPETD. Although our
scheme needs more time for aggregating the SMs’ readings,
it is still low. Therefore, the comparison with PPETD demon-
strates that our scheme can reduce the computation overhead
of reporting power consumption readings on SMs by 97.4%.
This is because the cryptographic techniques used in [11], such

Fig. 6. ROC of our model, for the plaintext model (without privacy
preservation) and our privacy-preserving model.

as secure multiparty computation (SMC) and garbled circuits,
need extensive computation overhead, so only one convolution
layer is used since much more overhead is needed if it uses
more layers. Using SMC, the SMs and SO have to execute
some protocols interactively and collaboratively and exchange
messages to evaluate the model using masked readings. In this
case, an additional overhead is needed to ensure that each SM
performs the computations correctly and does not cheat, e.g.,
a consumer may fool the detector by sending a false reading
for billing/monitoring and another true reading for theft detec-
tion. However, in ETDFE, the SO solely runs the electricity
theft detection model on the encrypted readings sent by the
SMs without the involvement of the SMs in the computations,
which is much more efficient.

For our privacy-preserving FFN model evaluation, the total
time needed to evaluate 8318 hidden units over 15 layers FFN
model is around 1.94 s for each consumer at the end of the
electricity theft interval, while PPETD MD1 requires 48 min
to evaluate the model. Therefore, our scheme provides 99.9%
improvement in evaluating the electricity theft detection model
by the SO. It is worth nothing that this 1.94 s includes the
decryption of the first layer and obtaining the result of the
classifier. Moreover, unlike PPETD, our scheme does not need
each SM and the SO to be engaged in online/interactive session
for evaluating the electricity theft detection model.

2) Communication Overhead: We used the elliptic curve,
in the cryptography operations needed for our scheme, which
provides a 160-b security level. As can be seen from (2),
each SM sends an encrypted fine-grained reading of total size
of 40 B. For privacy-preserving evaluation of the electricity
theft detection model, the SO uses the stored ciphertexts sent
by each SM; therefore, no additional communication over-
head is needed between the SO and the SMs. On the other
hand, PPETD uses masked readings to preserve consumers’
privacy, and also uses secure multiplication, secure evaluation
of sigmoid(.), and garbled circuit for privacy-preserving eval-
uation of a CNN model. This leads to a high communication
overhead of around 1900 MB per SM using PPETD MD1, as
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can be seen in Table IV. As a result, our scheme offers a sig-
nificantly lower communication overhead in comparison with
PPETD.

VII. SECURITY AND PRIVACY ANALYSIS

Our scheme can achieve the following desirable secu-
rity/privacy requirements that can counter the attacks men-
tioned in Section III-B.

Theft Detection: To ensure the secure evaluation of our elec-
tricity theft detector, each SM first encrypts its fine-grained
power consumption readings using FE, and then, the SO uses
the functional decryption keys to get the output of the first
layer without being able to learn the individual readings of
the SM. Then, this output can be used to obtain the classifica-
tion of the model. In addition, our scheme ensures that only
the SO knows the result of the electricity theft detector, unlike
PPETD [11] in which the result is revealed to both the SO and
SM. This may give the consumer enough time to change the
malicious software of the SM before the SO sends technicians
to inspect it to avoid liability.

On the other hand, the SO uses the same encrypted readings
for monitoring, billing, and evaluation of the electricity theft
detector. Thus, our scheme ensures that a consumer will not be
able to fool the detector by sending two readings; a false read-
ing for billing/monitoring and another true reading for theft
detection. Therefore, our scheme is secured against this mis-
behavior, and hence, it can satisfy the security requirement of
privacy-preserving theft detection (S1).

Consumers’ Privacy Preservation: The consumers’ fine-
grained power consumption readings are encrypted and no
entity (including SO) is able to learn the individual read-
ings to preserve consumers’ privacy. In addition, if the same
reading is repeated at different times, the ciphertext looks
different because each time the encryption is done using dif-
ferent time slot identifier and thus U�t cannot be repeated.
If U�t is reused, the ciphertexts of two readings of the
SMi (ri[1] and ri[2]) are ci[1] = (s�

i · U�) + ri[1]P and
ci[2] = (s�

i · U�) + ri[2]P, respectively. Hence, by subtracting
the two ciphertexts: ci[1] − ci[2] = (ri[1] − ri[2])P, by know-
ing one reading, the other can be obtained. To learn a certain
consumer’s power consumption reading, the SO must collude
with (|SM|−1) consumers. This can be done by subtracting the
total power consumption of the colluding SMs from the total
power consumption known to the SO. This attack is not feasi-
ble when the number of SMs in an AMI network is large. In
addition, although the SO has

∑b
t=1 y2[t](s�

i · U�t), U�t, and
y2 for the billing process, it is difficult to obtain the SMi’s
secret key si and using it to compute the SMi’s future read-
ings, because U�t changes, and thus it is infeasible to solve
the discrete logarithmic problem. Therefore, ETDFE satisfies
the security requirement of privacy preservation (S2).

Confidentiality of AMI’s Total Power Consumption and
Consumers’ Bills: After receiving the encrypted fine-grained
power consumption readings from SMs, the SO can aggre-
gate the readings to obtain the total power consumption for
load monitoring. Attackers, who may be able to intercept the
encrypted readings, learn nothing about the total consumption
of an AMI because a private key known only to the SO is

needed to calculate the aggregated power consumption read-
ings. Also, the SO is the only entity which is capable of
computing the bill of each consumer since a secret key known
only to the SO is needed. Thus, ETDFE satisfies the security
requirement of the aggregated power confidentiality (S3).

VIII. CONCLUSION

In this article, we have proposed ETDFE, a novel scheme
that uses encrypted fine-grained power consumption read-
ings reported by the SMs for electricity theft detection, load
monitoring, and computation of electricity bills following
dynamic pricing while preserving consumers’ privacy. To pre-
serve privacy, no entity is able to learn the fine-grained power
consumption readings of individual consumers. FE is used by
each consumer to encrypt the power consumption readings,
and the SO uses a functional decryption key to compute bills
and total power consumption for load management, and eval-
uate a machine learning model using a set of encrypted power
consumption readings to detect electricity theft. Moreover,
extensive simulations have been conducted using the real data
set t o evaluate our scheme. The given results indicate that our
scheme can detect fraudulent consumers accurately and pre-
serve consumers’ privacy with acceptable communication and
computation overhead. Unlike [11], our scheme does not suffer
from accuracy degradation due to the privacy-preserving eval-
uation of the model. Furthermore, the comparison with [11]
demonstrates that our scheme can reduce the computation
overhead of reporting a power consumption reading on SMs
by 97.4%, while offering a significantly lower communica-
tion overhead. Unlike [11], the SO and SMs do not need to
establish an online/interactive session to evaluate the electric-
ity theft detection model, and we also reduce the computation
and communication overhead from 48 min to only 1.94 s, and
from 1900 MB per SM to only 40 B, respectively.
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