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Abstract—The smart grid is a multi-dimensional data-
generating cyber-physical system. Distributed architectures
and the heterogeneous nature of the Internet-of-Things (IoT)
sensors make it more prone to various cyber-attacks. False
data injection attacks (FDIAs) have recently emerged as
significant threats to smart grid state estimation. As a result,
real-time locational detection of stealthy FDIAs is critical for
smart grid security and reliability. In this paper, we introduce
a comparative analysis of various deep-learning approaches to
test their effectiveness in the location-based detection of FDIA.
Also, a deep learning approach is developed by constructing
a multi-feature architecture based on a convolution neural
network and long short-term memory network (MCNN-
LSTM). Extensive testing on IEEE test cases has demonstrated
that the proposed approach outperforms the existing deep
learning approaches in locating FDIAs for small and large
systems under different attack scenarios. We evaluate the
performance of each model in terms of presence and location-
based detection accuracy, model complexity, and prediction
time. Extensive results in the IEEE 14 and IEEE 118-bus
systems show that the suggested architecture has a locational
detection accuracy of more than 94% and 95%, respectively.
From the results, we can conclude the proposed approach is
more robust, scalable, and faster in detecting the locations
of compromised measurements than the other deep learning
models.

Index Terms—Smart Grid, FDIA, CNN, LSTM, Bi-LSTM,
CNN-LSTM

I. INTRODUCTION

A smart grid (SG) is a cyber-physical system (CPS)
that combines modern digital technologies, automation,
computer, and control to enable bidirectional communica-
tions between consumers and utility [1]–[7]. Despite the
several advantages of having more control and data over
the power network, SGs are vulnerable to cyber-attacks [8]–
[14]. The primary objective of cyber-attacks is to disrupt or
maliciously mislead the SG state estimation process, which
could result in regional blackouts or attempts to manipulate
the price of electricity with catastrophic economic con-
sequences [15]–[19]. One of these cyber-attacks is data
integrity attacks. FDIAs are considered severe types of data
integrity attacks that a power network can be vulnerable to.

FDIAs attempt to deceive power system status estimations
by introducing fake data into meter measurements [20],
[21]. FDIAs might be well-structured (stealthy) or unstruc-
tured attacks. Several researchers have proposed different
approaches to construct FDIA [22]. A well-structured FDIA
can be performed even if the attacker only may have
some partial knowledge of the power grid configuration
information [23].

Two strategies can be used to protect the network from
such attacks: protection-based strategy and detection-based
strategy. Recently, detection-based approaches are based on
deep learning (DL) models. Deep neural networks have
demonstrated their ability to detect anomalies in supervised
[24], semi-supervised [25], and unsupervised [26] domains.
In [27], the authors developed an enhanced DBN archi-
tecture called Conditional Deep Belief Network (CDBN)
to extract high-dimensional temporal aspects of FDIAs.
The authors in [28] adopted this concept and added a
Convolutional Neural Network (CNN) architecture in front
of the Recurrent Neural Network (RNN) to adapt the
data’s dimensionality. An LSTM-based encoder-decoder for
anomaly identification with an F1-score of above 0.84 is
presented in [29]. In [30], the authors proposed a multilabel
based classification strategy for location detection of FDIA
using CNN. The research in [31] introduces a CNN with
LSTM, a CNN with the Gated Recurrent Unit (GRU), and
K-Nearest Neighbors (KNN) strategies for the detection
of FDIA. The main propositions of this research can be
summarized as follows:

• a comparative evaluation of several deep learning mod-
els has been conducted to identify the best multilabel
classifier for locating compromised meters under a
variety of attack and topology scenarios.

• a multi-feature based detector based on one-
dimensional CNN (Conv1D) and LSTM is proposed.
All of the research was done using the IEEE 14-bus
and 118-bus test systems, which yielded acceptable
findings for presence and location detection accuracy.



Extensive evaluations have been performed in terms
of the presence and detection-based accuracy, model
complexity, and prediction time.

The remainder of this paper is structured as follows:
Section II presents the power system model for state estima-
tion. The problem formulation and suggested architectural
designs are described in Section III. The performance of
the suggested detectors is then demonstrated in section IV.
The paper’s conclusion is included in Section V.

II. PROBLEM FORMULATION
A. State estimation Model

Power systems are constantly checked in order to main-
tain normal and secure operating conditions. This is ac-
complished by employing the state estimation function. We
assumed that there are M meters with M measurements
z1, ..., zM and N state variables x1, ..., xN . The relationship
between these M meter measurements and N state variables.
A linear regression model for state estimation using the
DC power flow model can express the relationship between
these M metre measurements and N state variables as
follows [32]:

z = H x + e, (1)

where e represents measurement errors with a zero mean.
Whereas H ∈ Rmxn denotes Jacobian matrix. The asso-
ciated measurement will be considered poor data as long
as

R = ∥z − Hx̂∥2 ≥ τ (2)

B. Stealthy False Data Injection Attack (FDIA)

In the case of stealthy FDIA, Ref. [23] proved that an
optimally structured attack can be formed by solving a min-
cut problem when the attacker only has minimal knowledge
of the measuring matrix H. Any non-zero arbitrary vector
can be chosen by the attacker as the attack vector a,
and then construct the malicious data added to the initial
measurements a= Hc, where c ̸= 0 and c ∈ Rn be any
arbitrary vector [33]. The measurements vector can then be
represented as:

za = Hx + e+ a (3)

Such attacks can deceive detection by conventional resid-
ual test techniques in Eq. (2), As a result, the control unit
may assume that the compromised state x̂a = (x̂+c) is the
actual state and in such circumstances, the residual remains
unaffected:

∥za − Hx̂a || = ∥z + a− H(x̂ + c)∥ = ∥z − Hx̂∥ (4)

III. FDIA LOCATION-BASED DETECTION SCHEMES

This section provides the detection mechanisms and how
they will be implemented.

A. Detection of FDIA location

Identifying the location of the FDIA vector is accom-
plished by categorizing all the meters’ measurements into
two labels: 1 for the compromised meter and 0 for an
uncompromised meter. Therefore, the locational detection
of FDIA can be characterized as a multilabel classification
problem.

B. Multi-feature base CNN-LSTM Architecture (MCNN-
LSTM)

The developed methodology can handle measurement
datasets with meter malfunctions, failures, communication
issues, unstructured and structured FDIA. The suggested
architecture is shown in Fig.1 and composed of:

1) Permute Block
When permutation is applied to the input before the CCN

block, just a single step with N variables will be processed.
Because the input now consists of multi-features readings,
The data can be constructed using a tensor of shape (B, N ,
M ), where B denotes the batch size, N is the number of
steps, and M is the number of measurements processed for
each time step.

2) CNN Block
Assuming that L CNN layers, on each of these layers,

a set of 1D filters x is applied. The first convolutional
layer’s feature maps m1,j which were created using the
multi-feature input measurements z, can be expressed as

mt
1,j = ReLU

(
zt ∗ x1,j + b1,j

)
(5)

where x1,j is the jth kernel, and b1,j is the corresponding
bias. b1,j is added to all the convolution output, and the
convolution process is indicated by ∗. These feature maps
are then fed into the LSTM layer. The inputs for Ith

convolutional layer are the features generated at (I − 1)th

LSTM Layer. The output of the Ith layer is as follows:

mt
I,j = ReLU

(
mt

I−1,j ∗ xI,j + bI,j
)

(6)

where mt
I,j represents the jth feature map at the I-th

convolutional layer.
3) LSTM Block
An LSTM is a modified RNN structure. According to

[34], the vanishing gradient problem that plagues conven-
tional RNNs is avoided in LSTM by incorporating gating
functions into its state dynamics. LSTM has multi-feature
maps from CNN layer mt at each time step. Three gates:
an input gate i, a forget gate f , and an output gate o are
presented in each LSTM cell. The information flow of an
LSTM cell is as follows:

ft = σg (wfmt + ufht−1 + bf ) (7)

it = σg (wimt + uiht−1 + i) (8)

ot = σg (womt + uoht−1 + bo) (9)

c̃t = tanh (wcmt + ucht−1 + bc) (10)

ct = ft · ct−1 + it · c̃t (11)

ht = ot · tanh (ct) (12)

where w is the recurrent connection between the previous
and current hidden layers. The weight matrix that connects
the inputs to the hidden layer is denoted by u. tanh
denotes tangent function, and . represents element-wise
multiplication. Here, h and c represent hidden state and cell
state vectors, respectively. The LSTM layer’s features are
then passed to another CNN layer. The Ith output of the
LSTM layer is then passed to a global pooling layer.
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Fig. 1. FDIA’s MCNN-LSTM location-based detector architecture.

4) Fully connected layer
Finally, a dense layer is linked to the n outputs, and the

output layer is employed with a sigmoid function to classify
the meter labels. The final multi-label categorization output
for every meter j at t time step can be shown as:

ŷt = σg (wd × ht + bd) (13)

where, σg denotes the sigmoid function, and wd, bd are the
weights and biases of the fully connected layer, respectively.

C. Training Procedure

The training data is composed of the measurement vector
z and the meter labels yt. These labels are used to train the
detectors and can be shown as yt = 1 for compromised
meters or yt = 0 for otherwise.

The key parameters, including the number of kernels,
neurons, activation function, optimizer, learning rate, batch
size, number of epochs, and number of layers, must be
modified before the recommended detector can be used to
classify the measurements from the meters. The number
of layers utilized may have an impact on the accuracy of
locational identification; using too few layers may result
in underfitting, while using too many layers may result
in overfitting. Finding the appropriate parameters for the
suggested approach during the training phase is the aim of
the parameter-tuning procedure.

1) Mini-batch, early stopping, and cross-validation tech-
nique

Cross-validation, the early stopping technique, and mini-
batch gradient descent are employed to reduce over-fitting
and speed up the convergence of the detector architectures.
The gradient descent is calculated for each mini-batch using
100 randomly chosen examples from the training dataset.
For each batch, the training dataset is separated into three
portions: 0.7 for training, 0.3 for cross-validation which
means .2 used for validation, and 0.1 for testing.

2) Loss function
Cross entropy is primarily employed for multilabel clas-

sification, which shows the error between real meter labels
and predicted meter labels for each mini-batch. During
training, the loss function is used to optimize the hyper-
parameters and is represented as follows:

dLi=

∑
t∈θ

−1

m

m∑
i=1

ŷi log y
t
i + (1− ŷi) log

(
1− yti

)
(14)

IV. EXPERIMENTAL RESULTS

This section specifically focuses on the training and
testing datasets. Following that, evaluation metrics for FDIA
detection were mentioned. Also, this section investigates
the effectiveness and reliability of the suggested scheme’s
performance in identifying the attack presence and falsified
meters’ location.

A. Dataset

This section evaluates the proposed locational detector
from FDIA in IEEE 14- and 118-bus systems. The grid
topologies are available from MATPOWER package and
The power topologies can be described as follows: for the
IEEE 14-test case, the number of total measurements is
19 while in the IEEE 118-test case, the number of total
measurements is 180.

1) Model’s Parameters
The Keras library and Tensorflow are used to train the

proposed model (MCNN-LSTM) which utilizes 128 filters
with 3x1 kernel sizes, and a ’RELU’ activation function for
each Conv1D layer. 128 hidden unit is employed for each
layer of LSTM. Furthermore, the epoch is set at 200. The
batch size is set to 100 and the cross entropy is employed as
the loss function for prediction. The data is fitted using the
Adam optimizer, which has starting learning rate of 0.001
and patience of 5. We compared the proposed approach
to state-of-the-art models such as multilayer perceptron



(MLP), CNN, LSTM, Bidirectional LSTM (Bi-LSTM), and
CNN-LSTM.

2) Training, and Testing Dataset
The dataset for input measurements is adopted from [30]

and prepared as follows:
• The training set has a dimension of 550,000 ×

Bus Size. The training data are divided into 500,
000 samples without attack and 50,000 samples under
attack.

• Five different L2-Norms of the injected attacks (at-
tack levels range from 1 to 5) are included in the
testing set, each with a dimension of 10,000 Bus
Size for measurements and labels. Each variety is
divided into 5,000 uncompromised samples and 5,000
compromised samples.

The classifier’s outputs ŷt are continuous numbers rang-
ing from 0 to 1. As a result, the classifier establishes
a distinction threshold to decide whether to classify the
output as 0 or 1. The discrimination threshold can be
changed to increase or decrease the sensitivity to application
parameters. The discrimination threshold is set at 0.5.

We assessed the offered approaches when the L2-Norm
FDIA is 1 and the standard deviation of the measurement
error is 0.2. The number of hidden layers varies between
one and four. We used the same datasets for training and
testing to ensure a fair comparison.

B. Evaluation Metrics
The Precision, Recall, and F1-score of the predicted

labels were employed as performance indicators. The pre-
cision and recall are represented as follows

Precision =
True Positive (TP)

True Positive (TP) + False Positive (FP)
,

(15)

Recall =
True Positive (TP)

True Positive ( TP) + False Negative (FN)
,

(16)

F1-score = 2× Precision × Recall
Precision + Recall

. (17)

Another important evaluation criterion for locating com-
promised meters is row/location accuracy (RACC). RACC
is described as the likelihood that the detector would
classify all of the meters locations that are without attack
as uncompromised, but meters under attack are labeled as
compromised [30].

1) IEEE 14-test case
The metrics for the deep learning models with varying

numbers of hidden layers are compared in table I for the
IEEE 14-test case. Overall, the MLP model has the worst
locational detection accuracy and least F1 Score. F1-score
of CNN, LSTM, Bi-LSTM, and CNN-LSTM are above
99.3% and for RACC, CNN is above 93%, LSTM and
Bi-LSTM are above 94%, and CNN-LSTM is above 95%.
The suggested detector, however, outperforms deep learning
models as it achieves F1 Score and RACC values of above
99.5% and 96%, respectively.

We implemented these structures with three hidden layers
to achieve an acceptable balance of computational difficulty
and locational detection accuracy.

2) IEEE 118-test case
The performance assessment in the IEEE 118-bus test

case is provided in table II. Precisions and recalls are
always above 99%, which means All models can completely
detect the presence of FDIA. It can be observed that MLP
has the worst RACC, 61.62%, and 63.57% at layer 1 and
layer 4, respectively. Meanwhile, BI-LSTM outperforms
CNN, LSTM, and CNN-LSTM. MCNN-LSTM, BI-LSTM,
LSTM, CNN-LSTM and CNN reach RACC above 93%,
85%, above 84%, above 84% and 82%, respectively. As a
result, MCNN-LSTM performs better than the alternative
methods. This shows that even with a complex bus system,
the proposed detector can detect both the presence and
location of FDIA, proving the scalability of the proposed
approach.

3) Robustness
We test the suggested architecture’s resilience in the data-

collecting environment against the attacker’s aggression by
lowering the standard deviation of noise to 0.2 and varying
the L2 norm of the FDIA from 1 to 5. From Fig. 2,
We observe that at variant 1 of L2-Norm, the RACC of
CNN, LSTM, Bi-LSTM, CNN-LSTM are 93.31%, 95.05%,
94.95%, and 95.28%, respectively. At variant 5 of L2-
Norm, the RACC are 92.06%, 99.74%, 99.88%, 99.81%
and 99.87%, respectively. Meanwhile, the MCNN-LSTM
detector achieves 96.27% and 99.97%. Overall, the sug-
gested approach outperforms the previous models and is
sensitive to low and high L2-Norm of FDIA.

4) Scalability
We examined the scalability of the suggested architecture

in the IEEE 118-test case because the performance gap in
this system is more noticeable than it is in the IEEE 14-
test case. As depicted in Fig.3, Compared to other detection
techniques, the suggested MCNN-LSTM detection scheme
is more sensitive to lower levels of L2-norm. At variant 1
and variant 5 of L2-norm, MCNN-LSTM archives 92.14%
and 99.13% while Bi-LSTM, LSTM, CNN-LSTM, CNN
and MLP reach 85.75%, 84.58%, 84.57%, 82.23% and
66.34% at variant 1 and 98.96%, 98.74%, 98.75%, 96.88%
and 91.85% at variant 5, respectively. Overall, the loca-
tional performance of the MCNN-LSTM detection scheme

Fig. 2. RACC comparison in the IEEE 14-test case.



TABLE I
PERFORMANCE EVALUATION OF THE IEEE 14-TEST CASE.

Model Layers Precision % Recall % F1-score % RACC % Number of Parameters Test Time (Sec)

MLP

1 97.83 97.24 97.54 66.16 46,483 0.18
2 98.10 98.01 98.06 73.97 62,995 0.26
3 98.26 98.08 98.17 74.85 79,507 0.29
4 98.20 98.04 98.12 74.57 96,019 0.34

CNN

1 99.21 99.43 99.32 93.28 119,059 0.20
2 99.19 99.43 99.31 93.54 168,339 0.29
3 99.16 99.43 99.30 93.83 217,619 0.30
4 99.10 99.40 99.25 93.52 266,899 0.38

LSTM

1 99.23 99.49 99.36 94.67 113,299 0.19
2 99.26 99.49 99.38 94.64 245,395 0.30
3 99.19 99.54 99.37 94.94 377,491 0.37
4 99.30 99.57 99.44 95.50 509,587 0.45

Bi-LSTM

1 99.20 99.51 99.36 94.56 226,579 0.27
2 99.20 99.50 99.35 94.60 621,843 0.47
3 99.21 99.52 99.36 94.66 1,017,107 0.68
4 99.19 99.53 99.36 94.81 1,412,371 0.90

CNN-LSTM

1 99.28 99.47 99.37 94.51 173,971 0.22
2 99.27 99.58 99.42 95.36 350,483 0.30
3 99.27 99.59 99.43 95.44 526,995 0.39
4 99.27 99.57 99.42 95.43 703,507 0.47

MCCN-LSTM

1 99.46 99.64 99.55 96.12 141,971 0.18
2 99.42 99.66 99.54 96.30 323,347 0.24
3 99.43 99.64 99.53 96.31 504,723 0.28
4 99.45 99.62 99.53 96.07 686,099 0.36

Fig. 3. RACC comparison in the IEEE 118-test case.

outperforms the competitive methods. All the benchmark
models can effectively identify the presence of the FDIA
as their F1-score is above 99%. We can infer from Table
II and Fig. 3 that MCNN-LSTM is more suitable for the
118-bus system than other models.

5) Location Detection
As shown in Table III, the suggested architecture outper-

forms all models in identifying the locations of compro-
mised meters. We use an IEEE 118-test case to show the
location-based detection accuracy for eight attack scenarios
as follows:

1) 5th meter is under attack and 6th is not;
2) 6th meter is under attack and 5th is not;

3) 5th and 6th meters Both are under attack ;
4) Neither 5th nor 6th meters are under attack ;
5) 5th meter is under attack and 20th is not;
6) 20th meter is under attack and 5th is not;
7) 5th and 20th meters Both are under attack;
8) Neither 5th nor 20th meters are under attack.

When the system becomes larger with a low L2-norm of
FDIA, we can observe that other deep learning models,
such as MLP, CNN, LSTM, Bi-LSTM, and CNN-LSTM,
are no longer effective to distinguish the co-occurrence
dependencies of adjacent meters. In the meanwhile, under a
low level of attack, the proposed MCNN-LSTM can locate
compromised measurements as the system size grows.

6) Model complexity
There are several benefits to fewer trainable parameters.

The first benefit is that the smaller value of the gradient
item facilitates quicker training. The second benefit is that
dropout layers aren’t necessary because overfitting occurs
less frequently, as seen in Table I and Table II. Thus,
utilizing a smaller set of trainable parameters might reduce
model complexity and accelerate model implementation.

For the 118-test case represented in Table II, MLP, CNN,
CNN-LSTM, LSTM, and Bi-LSTM models require total
parameters of 4,180,660, 4,236,340, 4,504,500, 4,478,644,
4,478,644 and 9,219,252 respectively, to achieve RACCs
of 66.11%, 82.07%, 84.16%, 84.72%, and 85.72%. Mean-
while, the suggested approach requires 587,316 parameters
to achieve a detection accuracy of 93.56%. When compared
to benchmark models, MCNN-LSTM has lower complexity



TABLE II
PERFORMANCE EVALUATION OF THE IEEE 118-TEST CASE.

Model Layers Precision % Recall % F1-score % RACC % Number of Parameters Test Time (Min)

MLP

1 99.66 99.69 99.67 61.62 4,147,636 0.23
2 99.64 99.77 99.70 67.73 4,164,148 0.29
3 99.65 99.74 99.69 66.11 4,180,660 0.34
4 99.65 99.70 99.68 63.57 4,197,172 0.40

CNN

1 99.79 99.89 99.84 82.33 4,137,780 0.29
2 99.78 99.89 99.84 82.79 4,187,060 0.40
3 99.76 99.89 99.83 82.07 4,236,340 0.43
4 99.79 99.88 99.83 81.83 4,285,620 0.46

LSTM

1 99.84 99.88 99.86 83.84 4,214,452 0.65
2 99.84 99.89 99.87 84.58 4,346,548 1.79
3 99.85 99.89 99.87 84.72 4,478,644 1.85
4 99.85 99.88 99.86 84.78 4,610,740 2.57

Bi-LSTM

1 99.85 99.90 99.86 85.04 8,428,724 1.30
2 99.84 99.90 99.87 85.66 8,823,988 2.56
3 99.85 99.90 99.886 85.72 9,219,252 4.16
4 99.85 99.91 99.88 86.69 9,614,516 5.74

CNN-LSTM

1 99.84 99.89 99.87 84.51 4,233,908 0.70
2 99.85 99.89 99.87 84.85 4,369,204 1.27
3 99.85 99.88 99.86 84.16 4,504,500 1.95
4 99.84 99.88 99.86 84.23 4,639,796 2.65

MCCN-LSTM

1 99.94 99.96 99.95 93.45 224,564 0.23
2 99.94 99.97 99.95 94.16 405,940 0.33
3 99.93 99.96 99.95 93.56 587,316 0.39
4 99.83 99.91 99.87 86.00 768,692 0.48

TABLE III
LOCATION DETECTION (RACC %) ON 5TH, 6TH, AND 20TH METERS.

Compromised Location MLP CNN LSTM Bi-LSTM CNN-LSTM MCNN-LSTM

5th not 6th 69.24 81.74 84.93 86.03 83.95 94.61
6th not 5th 64.53 79.56 83.84 84.49 82.65 93.82
5th & 6th 56.91 74.66 77.23 79.40 77.37 93.50

Neither 5th nor 6th 67.13 83.54 85.73 86.68 85.30 93.38

5th not 20th 63.27 78.29 81.34 82.78 81.09 94.06
20th not 5th 63.57 80.31 85.04 86.34 84.41 93.87
5th & 20th 63.73 78.67 81.07 83.20 80 94.13

Neither 5th nor 20th 67.60 83.54 85.46 86.21 84.89 93.33

and faster implementation.
7) prediction Time
From Table I, it’s observed that the MCNN-LSTM model

predicts compromised meters more quickly than the other
models. Additionally, from Table II it can be observed that
MCNN-LSTM has a prediction time that is slightly larger
than MLP but MLP is more complex and has a lower
detection accuracy. Overall we can conclude Bi-LSTM is
the slowest model in predicting the location of compromised
meters, whereas MCNN-LSTM detects compromised me-
ters more quickly than CNN, LSTM, Bi-LSTM, and CNN-
LSTM models.

V. CONCLUSION

The use of deep neural networks to handle data integrity
issues was covered in this research, with a focus on the

location-based detection of FDIAs in smart grids for af-
fected measurements. We evaluated various deep learning
techniques in a comparative analysis to see how well they
could locate compromised measurements. In addition, we
proposed a multi-feature based on the CNN-LSTM ap-
proach (MCNN-LSTM). The MCNN-LSTM receives inputs
as a multi-feature time series with a single time step by
the CNN and LSTM blocks. This is accomplished through
the dimension permutation layer. The proposed model’s
resilience, scalability, complexity, and prediction time of
the proposed model have been examined through in-depth
simulations in IEEE-test cases using TensorFlow and Keras
libraries. In particular, the results demonstrated that the
MCNN-LSTM can identify the locations of FDIAs through-
out the bus systems in a variety of attack scenarios.
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