ECE121: Electronics (1)

Lecture 2: Diode Clipping and Calmping Circuits

Dr. Haitham El-Hussieny

Electronics and Communications Engineering Faculty of Engineering (Shoubra)

Benha University

Spring 2017

Lecture Outline:

Introduction.

- 2 Diode Clipping Circuits.
- 3 Diode Clamping Circuits.

Table of Contents

Introduction.

- Diode Clipping Circuits.
- Oiode Clamping Circuits.

Introduction:

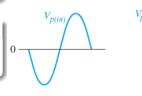
Diode Clipper (Limiter):

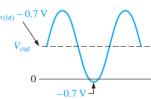
Clippers or limiters are sometimes used to **clip off** portions of signal voltages above or below certain levels.

Clipping

Introduction:

Diode Clipper (Limiter):


Clippers or limiters are sometimes used to **clip off** portions of signal voltages above or below certain levels.


Diode Clamper:

Clamper circuit is used to **add or restore a dc level** to an electrical signal.

Clipping

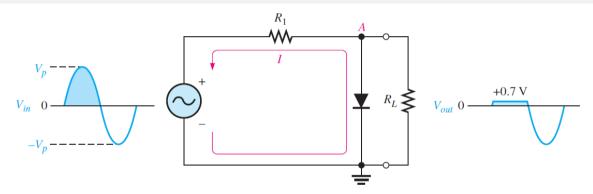
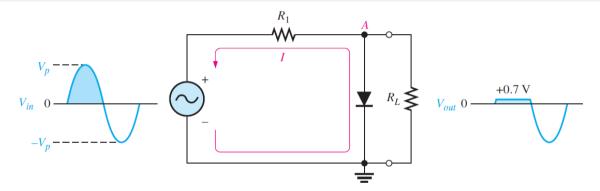

Clamping

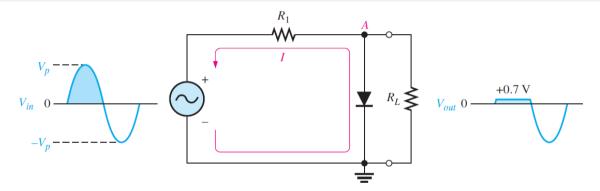
Table of Contents


Introduction

- 2 Diode Clipping Circuits.
- 3 Diode Clamping Circuits.

Positive Clipping:

Positive Clipping:

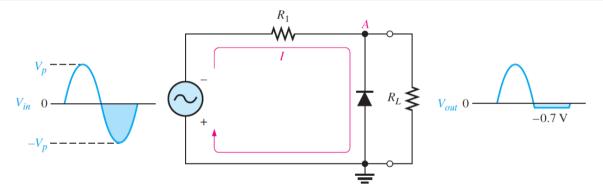


During the +ve half cycle:

The Diode is forward biased (ON) and $V_{out} = V_D = 0.7 \ V$ (Clipped away!).

Dr. Haitham El-Hussieny ECE121: Electronics (1) 6 / 17

Positive Clipping:


During the +ve half cycle:

The Diode is forward biased (ON) and $V_{out} = V_D = 0.7 \ V$ (Clipped away!).

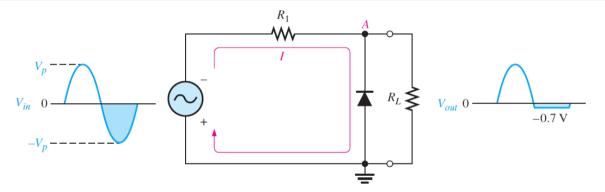
During the -ve half cycle:


The Diode is reverse biased (OFF) and $V_{out} = V_{in}$ (Remained!).

Negative Clipping:

Dr. Haitham El-Hussieny ECE121: Electronics (1) 7 / 17

Negative Clipping:



During the +ve half cycle:

The Diode is reverse biased (OFF) and

$$V_{out} = V_{in}$$
 (Remained!).

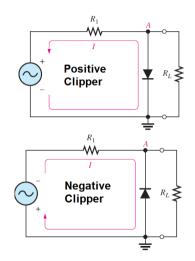
Negative Clipping:

During the +ve half cycle:

The Diode is reverse biased (OFF) and $V_{out} = V_{in}$ (Remained!).

Dr. Haitham El-Hussienv

During the -ve half cycle:

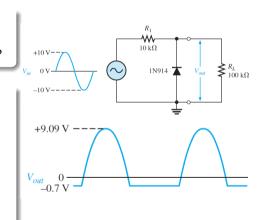

ECE121: Electronics (1)

The Diode is forward biased (ON) and $V_{out} = V_D = 0.7 \ V$ (Clipped away!).

- both Positive and Negative Clipping, a part of the output voltage looks like the input voltage.
- The output voltage magnitude determined by the voltage divider formed by R_1 and the load resistor, R_L , as follows:

$$V_{out} = rac{R_L}{R_1 + R_L} V_{in}$$

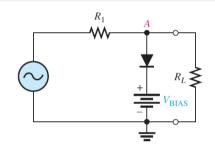
• If R_1 is small compared to R_L , then $V_{out} \approx V_{in}$.

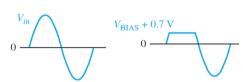

Example

What would you expect to see displayed on an oscilloscope connected across R_L in the limiter shown?

Solution:

The diode is forward-biased and conducts when the input voltage goes below -0.7V. So, for the negative clipper, the peak output voltage across R_L is:

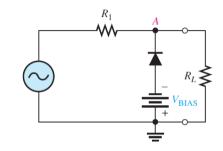

$$V_{p(out)} = \frac{R_L}{R_1 + R_L} V_{p(in)} = \frac{100}{100 + 10} 10 = 9.09 \ V$$

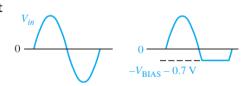


Biased Clippers:

Biased Positive Clipper:

- The level to which an ac voltage is clipped can be adjusted by adding a bias voltage, V_{BIAS}, in series with the diode.
- The voltage at point **A** must equal $V_{BIAS} + 0.7 \ V$ before the diode will become forward-biased and conduct.
- Once the diode begins to conduct, the voltage at point A is limited to $V_{BIAS}+0.7\ V$ so that all input voltage above this level is **clipped off**.

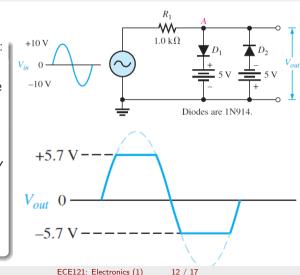

10 / 17


Dr. Haitham El-Hussieny ECE121: Electronics (1)

Biased Clippers:

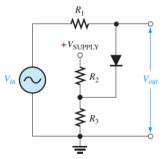
Biased Negative Clipper:

- To limit a voltage to a specified negative level, the diode and bias voltage must be connected as shown.
- In this case, the voltage at point A must go below $-V_{BIAS}-0.7\ V$ to forward-bias the diode and limit the input voltage.

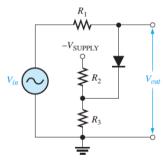

Dr. Haitham El-Hussieny ECE121: Electronics (1) 11 / 17

Biased Clippers:

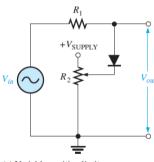
Combination of Positive and Negative Clippers:


- When the voltage at point A reaches +5.7 V, diode D_1 conducts and limits the waveform to +5.7 V.
- ② Diode D2 does not conduct until the voltage reaches -5.7 V.
- Therefore, positive voltages above +5.7 V and negative voltages below −5.7 V are clipped off.

Application: sinusoidal to square-wave conversion.



Voltage Divide Biased Clippers:

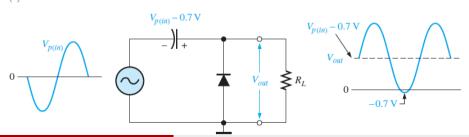

To change the bias voltage value V_{BIAS} , we can replace it by a resistive voltage divider.

(a) Positive limiter

(b) Negative limiter

(c) Variable positive limiter

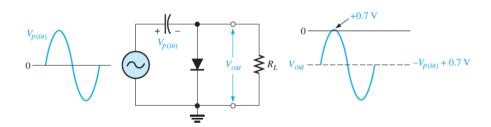
$$V_{\text{BIAS}} = \left(\frac{R_3}{R_2 + R_3}\right) V_{\text{SUPPLY}}$$


Table of Contents

Introduction

- Diode Clipping Circuits.
- 3 Diode Clamping Circuits.

[1] Positive Clamper:


- A clamper adds a **positive** dc level to an ac voltage.
- **During the -Ve half cycle:** the diode is forward biased, allowing the capacitor to charge to near the peak of the input
- **During the** +**Ve half Cycle:** the diode is reverse-biased. The capacitor can only discharge through the resistance of R_L .
- The amount that is discharged capacitor depends on the value of R_L .

Dr. Haitham El-Hussieny ECE121: Electronics (1) 15 / 17

[2] Negative Clamper:

• A clamper adds a **negative** dc level to an ac voltage.

Discuss it's operation by your self.

Dr. Haitham El-Hussieny ECE121: Electronics (1) 16 / 17

End of Lecture

Best Wishes

haitham.elhussieny@gmail.com

Dr. Haitham El-Hussieny ECE121: Electronics (1) 17 / 17