ECE121: Electronics (1)

Lecture 7: Zener Diodes

Dr. Haitham El-Hussieny

Electronics and Communications Engineering Faculty of Engineering (Shoubra)

Benha University

Spring 2017

Lecture Outline:

Introduction.

2 Fixed V_i , Fixed R_L .

 \bigcirc Fixed V_i , Variable R_L .

Table of Contents

Introduction.

- 2 Fixed V_i , Fixed R_L .
- \bigcirc Fixed V_i , Variable R_L .

Introduction:

- The Zener diode has three regions of operations. Each region has it own approximation model.
- It can be used as a part of protection circuit or as a voltage regulator.
- The use of the Zener diode as a regulator is so common that three conditions surrounding the analysis of the basic Zener regulator are considered:
 - Fixed load and fixed supply voltage.
 - Fixed supply voltage and variable load.
 - Variable supply voltage and fixed load.
- The first case is already studied in the previous semester and will briefly reviewed.

Zener diode characteristics

Table of Contents

Introduction.

- 2 Fixed V_i , Fixed R_L .
- \bigcirc Fixed V_i , Variable R_L .

Fixed V_i , Fixed R_i :

Example

Example

For the Zener diode regulator,

- **1** Determine V_L , V_R , I_Z and P_Z .
- ② If the load is changed to $R_L = 3 k\Omega$, repeat the above problem.

Example

Dr. Haitham El-Hussienv ECE121: Electronics (1)

Fixed V_i , Fixed R_L :

Solution:

Oetermine the voltage across the Zener diode to determine its state:

$$V_{zener} = V_L = \frac{V_i R_L}{R_L + R} = 16 \frac{1.2}{1 + 1.2} = 8.73 V$$

Since the voltage across the Zener is smaller than V_Z and the diode is reverse, then the Zener is OFF.

$$V_L = V_{zener} = 8.73 \ V$$
 $V_R = V_i - V_L = 16 - 8.73 = 7.27 \ V$
 $I_Z = 0$

Fixed V_i , Fixed R_L :

Solution:

2 If $R_L = 3 k\Omega$:

$$V_{zener} = V_i \frac{R_L}{R + R_L} = \frac{16 \times 3}{1 + 3} = 12 \ V$$

Since the voltage across the zener is greater than V_Z then the zener is operating in the zener region and can be approximated as battery with V_Z :

$$V_L = V_Z = 10V$$
 $V_R = V_i - V_L = 16 - 10 = 6V$
 $I_R = \frac{V_R}{R} = \frac{6V}{1 \text{ k}\Omega} = 6mA$

•

Fixed V_i , Fixed R_L :

Solution:

$$I_L = \frac{V_L}{R_L} = \frac{10 \, V}{3 k \Omega} = 3.33 \, mA$$
 $I_Z = I_R - I_L = 6 - 3.33 = 2.67 \, mA$

The power dissipated by the Zener diode is:

$$P_{Z} = I_{Z} \times V_{Z} = 26.7 \text{ mW}$$

Table of Contents

Introduction

- 2 Fixed V_i , Fixed R_L .
- 3 Fixed V_i , Variable R_L .

- The load resistance R_L determines the state of the Zener (on or off).
- Too small a R_L will result in a voltage V_L across the load resistor less than V_Z , and the Zener device will be in the "off" state.
- We need to find the range of load resistance that ensure the on state for the zener diode

$$V_L = V_i \frac{R_L}{R + R_I}$$

Dr. Haitham El-Hussieny ECE121: Electronics (1) 11 / 14

To determine the minimum load resistance, $R_{l min}$:

It is the resistance that will result in a lad voltage $V_L = V_Z$:

$$V_L = V_Z = V_i \; \frac{R_L}{R + R_L}$$

$$R_{Lmin} = \frac{R \ V_Z}{V_i - V_Z}$$

So, if a load resistance is grater than R_{Lmin} then the Zener will be on and:

$$I_{Lmax} = \frac{V_L}{R_I} = \frac{V_Z}{R_{Lmin}}$$

To determine the maximum load resistance, $R_{l,max}$:

Once the diode is ON, the voltage across R is fixed at:

$$V_R = V_i - V_Z$$

and,

$$I_R = \frac{V_R}{R}$$

The Zener current is:

$$I_Z = I_R - I_L$$

 I_Z is limited to the maximum zener current I_{ZM} from the data sheet.

$$I_{Lmin} = I_R - I_{ZM}$$
 $R_{Lmax} = \frac{V_Z}{I_{Lmin}}$

Example:

- For the shown network, determine the range of R_L and I_L that will result in V_L being maintained at 10 V.
- Determine the maximum wattage rating of the diode.

Solution:

$$R_{Lmin} = rac{R \ V_Z}{V_i - V_Z} = rac{1 \ k\Omega \ 10V}{50V - 10V}$$
 $R_{Lmin} = 250 \ \Omega$
 $I_{Lmax} = rac{V_L}{R_L} = rac{V_Z}{R_{Lmin}} = rac{10}{250} = 40 mA$

Dr. Haitham El-Hussieny

Solution:

$$V_R = V_i - V_Z = 50 - 10 = 40 V$$

$$I_R = \frac{V_R}{R} = \frac{40 V}{1 k\Omega} = 40 mA$$

$$I_{Lmin} = I_R - I_{ZM} = 40 - 32 = 8mA$$

$$R_{Lmax} = \frac{V_Z}{I_{Lmin}} = \frac{10 \ V}{8 \ mA}$$

Dr. Haitham El-Hussieny

ECE121: Electronics (1)

13 / 14

Solution:

$$P_{Zmax} = V_Z I_{ZM} = (10 \ V)(32 \ mA) = 320 mW$$

Dr. Haitham El-Hussieny

ECE121: Electronics (1)

13 / 14

End of Lecture

Best Wishes

haitham.elhussieny@gmail.com

Dr. Haitham El-Hussieny ECE121: Electronics (1) 14 / 14