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Remarks on The System Transfer Function:
Transfer function of Linear Systems:

G(s) =
numerator

denominator
=
L[output]
L[input] =

Y (s)

U(s)
=

b0s
m + b1s

m−1 + . . .+ bm−1s + bm
a0sn + a1sn−1 + . . .+ an−1s + an

=
p(s)

q(s)
(n ≥ m)

Remarks:
1 If the highest power of s in the denominator of the transfer function is equal to n, the

system is called an nth-order system. (e.g. G(s) =
s + 1

s2 + 2s − 1
is a second-order system)

2 When order of the denominator polynomial is greater than the numerator polynomial the
transfer function is said to be “proper”. Otherwise “improper”.

3 “Improper” transfer function could not exist physically.
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Remarks on The System Transfer Function:
Transfer function of Linear Systems:

G(s) =
numerator

denominator
=
L[output]
L[input] =

Y (s)

U(s)
=

b0s
m + b1s

m−1 + . . .+ bm−1s + bm
a0sn + a1sn−1 + . . .+ an−1s + an

=
p(s)

q(s)
(n ≥ m)

Poles and Zeros:
1 Roots of denominator polynomial,

q(s) = 0, are called ‘poles’.

2 Roots of numerator polynomial, p(s) = 0,
are called ‘zeros’.

3 Poles are represented by x on s-plane.

4 Zeros are represented by o on s-plane.

G (s) =
10

s + 3
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Remarks on The System Transfer Function:
Transfer function of Linear Systems:

Consider the following transfer functions:

1 Determine whether the transfer function is
proper or improper.

2 Calculate the Poles and zeros of the
system.

3 Determine the order of the system.

4 Draw the pole-zero map.

G (s) =
s + 3

s(s + 2)

G (s) =
(s + 3)2

s(s2 + 10)
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Linearization of Non-linear Systems:

Non-linear system

A system is nonlinear if the principle of superposition and homogeneous are not applied.

In practice, many electromechanical systems, hydraulic systems, pneumatic systems, and
so on, involve nonlinear relationships among the variables.

The non-linear systems are assumed to behave as linear system for a limited operating
range.

Example of nonlinear system is the damping force. It is linear at low velocity operation
and non-linear at high velocity operation.

Linearization of Nonlinear Systems:

If the system operates around an equilibrium point and if the signals involved are small
signals, then it is possible to approximate the nonlinear system by a linear system.
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Linearizion of Non-linear Systems:
Linear Approximation of Nonlinear Mathematical Models:

Consider a non-linear system defined by:

y = f (u) (1)

To obtain a linear model we assume that the variables deviate slightly from some operating
condition corresponds to ū and ȳ . The equation (1) can be expanded by using Taylor
expansion:

y = f (u)

y = f (ū) + ḟ (ū)(u − ū) +
1

2!
f̈ (ū)(u − ū)2 + . . .

If the deviation (u − ū) is small, we can neglect the high derivative terms:

y = f (ū) + ḟ (ū)(u − ū)
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Linearizion of Non-linear Systems:
Linear Approximation of Nonlinear Mathematical Models:

If the system is non-linear and has two inputs u1 and u2:

y = f (u1, u2)

The linearized model could be obtained by:

y = f (ū1, ū2) +
∂f (ū1)

∂u1
(u1 − ū1) +

∂f (ū2)

∂u2
(u2 − ū2)

Example: Linearize the system:

z = xy

in the region 5 ≤ x ≤ 7 , 10 ≤ y ≤ 12.

Solution: Choose x̄ = 6 and ȳ = 11

f (x̄ , ȳ) = 66;
∂f (x̄)

∂x
= 11;

∂f (ȳ)

∂y
= 6

The linearized model is

z = 6(x) + 11(y) − 66
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Mathematical Modeling of Mechanical Systems:
Equivalent Spring Constant:

Connected in Parallel

F = k1x + k2x = keqx

keq = k1 + k2

Connected in Series

F = k1y = k2(x − y)

keq =
1

1

k1
+

1

k2

=
k1k2

k2 + k2
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Mathematical Modeling of Mechanical Systems:
Equivalent Friction Constant:

Connected in Parallel

F = b1(ż − ẋ) + b2(ẏ − ẋ)

beq = b1 + b2

Connected in Series

F = b1(ż − ẋ) = b2(ẏ − ẋ)

beq =
1

1

b1
+

1

b2

=
b1b2

b2 + b2
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Mathematical Modeling of Mechanical Systems:
Example 1:

Spring-mass-damper system mounted on a cart

Consider the spring-mass-damper system mounted on a massless cart, u(t) is the displacement
of the cart and is the input to the system. The displacement y(t) of the mass is the output.
In this system, m denotes the mass, b denotes the viscous-friction coefficient, and k denotes
the spring constant.

For translational systems, Newton’s second
law is used:

ma =
∑

F

m is the mass.
a is the acceleration.
F is the force.
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Mathematical Modeling of Mechanical Systems:
Example 1:

ma =
∑

F

m
d2y

dt2
= −b(

dy

dt
− du

dt
) − k(y − u)

Taking the Laplace transform of this last
equation, assuming zero initial condition:

(ms2 + bs + k)Y (s) = (bs + k)U(s)

The transfer function:

G (s) =
Y (s)

U(s)
=

bs + k

ms2 + bs + k

Dr. Haitham El-Hussieny SPC318: System Modeling and Linear Systems 15 / 43



Mathematical Modeling of Mechanical Systems:
Example 1:

To obtain a state-space model of this system:

ẋ = Ax + Bu

y = Cx + Du

1 Write the system differential equation.

m
d2y

dt2
= −b(

dy

dt
− du

dt
) − k(y − u)

mÿ = −bẏ − ky + bu̇ + ku
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Mathematical Modeling of Mechanical Systems:
Example 1:

To obtain a state-space model of this system:

ẋ = Ax + Bu

y = Cx + Du

2 Put the output highest derivative at one side:

ÿ = − b

m
ẏ − k

m
y +

b

m
u̇ +

k

m
u
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Mathematical Modeling of Mechanical Systems:
Example 1:

ÿ = − b

m
ẏ − k

m
y +

b

m
u̇ +

k

m
u

3 Define two states:

x1 = y

x2 = ẏ− b

m
u Why?

4 Differentiate the two states:

ẋ1 = ẏ = x2 +
b

m
u

ẋ2 = ÿ− b

m
u̇

ẋ2 = −
b

m
ẏ − k

m
y +

�
��b

m
u̇ +

k

m
u−

�
��b

m
u̇

ẋ2 = −
b

m
[x2 +

b

m
u]− k

m
[x1] +

k

m
u

ẋ2 = − k

m
x1 −

b

m
x2 + ((

b

m
)2 +

k

m
)u
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Mathematical Modeling of Mechanical Systems:
Example 1:

5 Write the equations in state-space form:

[
ẋ1

ẋ2

]
=

[
0 1
−k
m

−b
m

][
x1

x2

]
+

 b

m
k

m
− (

b

m
)2

 u

y =
[
1 0

] [x1
x2

]
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Mathematical Modeling of Mechanical Systems:
Example 2:

(1) Equation of motion:

(2) Simplifying,

(3) Laplace transform,

(4) Substitute by X2(s),

(5) Finally,

Dr. Haitham El-Hussieny SPC318: System Modeling and Linear Systems 20 / 43



Mathematical Modeling of Mechanical Systems:
Example 3:

Inverted Pendulum

An inverted pendulum mounted on a motor-driven cart. The inverted pendulum is naturally
unstable in that it may fall over any time in any direction unless a suitable control force is
applied.

Inverted Pendulum Solid Rocket Booster Free-body diagram
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Mathematical Modeling of Mechanical Systems:
Example 3:

Define u as the input force.

The rotational motion of the pendulum
rod around its center of gravity:

I θ̈ =
∑

Moments

I θ̈ = V ∗ L ∗ sinθ − H ∗ L ∗ cosθ
I : Mass moment of inertia. (kg .m2)
θ: Rotational angle.
V : Vertical reaction force.
H: Horizontal reaction force.

L: Half length of the rod.
Free-body diagram
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Mathematical Modeling of Mechanical Systems:
Example 3:

The horizontal motion of rod center of
gravity:

ma =
∑

F

m
d2

dt2
(x + L ∗ sinθ) = H

The vertical motion of rod center of
gravity:

ma =
∑

F

m
d2

dt2
(L ∗ cosθ) = V −mg Free-body diagram
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Mathematical Modeling of Mechanical Systems:
Example 3:

The horizontal motion of the cart:

Ma =
∑

F

M
d2x

dt2
= u − H

Since we need to keep the pendulum
vertical, we can assume θ and ˙theta are
small quantities. So,

I sinθ ≈ θ.
I cosθ = 1.
I θθ̇2 = 0. Free-body diagram
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Mathematical Modeling of Mechanical Systems:
Example 3:

Using the linearity assumptions:
1

I θ̈ = V ∗ L ∗ sinθ − H ∗ L ∗ cosθ

I θ̈ = V ∗ L ∗ θ − H ∗ L (1)

2

m
d2

dt2
(x + L ∗ sinθ) = H

m(ẍ + Lθ̈) = H (2)

3

m
d2

dt2
(L ∗ cosθ) = V −mg

0 = V −mg (3)

Free-body diagram
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Mathematical Modeling of Mechanical Systems:
Example 3:

From the cart horizontal motion:

H = u −Mẍ

So, substitute by H in (2):

(M + m)ẍ + m ∗ L ∗ θ̈ = u

From the pendulum equations (1),(2) and
(3):

V = mg

So,

(I + mL2)θ̈ + m ∗ L ∗ ẍ = m ∗ g ∗ L ∗ θ
Free-body diagram
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Mathematical Modeling of Electrical Systems:
Electrical Resistance, Inductance and Capacitance:

Resistance

V-I in time domain

νR(t) = iR(t)R

V-I in s domain

VR(s) = IR(s)R

Inductance

V-I in time domain

νL(t) = L
diL(t)

dt

V-I in s domain

VL(s) = sLIL(s)

Capacitance

V-I in time domain

νc(t) =
1

C

∫
ic(t)dt

V-I in s domain

Vc(s) =
1

Cs
Ic(s)
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Mathematical Modeling of Electrical Systems:
Example 1:

RLC circuit

We need to find the transfer function G (s) =
Eo(s)

Ei (s)
of the RLC network.

RLC circuit

Applying the Kirchhoff’s voltage law:∑
V = 0

ei (t) − L
di

dt
− R.i − 1

C

∫
i dt = 0

1

C

∫
i dt = eo
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Mathematical Modeling of Electrical Systems:
Example 1:

RLC circuit

Taking Laplace transform with zero initial
conditions:

L.s.I (s) + RI (s) +
1

C

1

s
I (s) = Ei (s)

1

C

1

s
I (s) = Eo(s)

So,

G (s) =
Eo(s)

Ei (s)
=

1

LCs2 + RCs + 1
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Mathematical Modeling of Electrical Systems:
Example 1:

RLC circuit

To find the state-space model from TF:

G (s) =
Eo(s)

Ei (s)
=

1

LCs2 + RCs + 1

The differential equation for the system:

ëo +
R

L
ėo +

1

LC
eo =

1

LC
ei

Defining state variables:

x1 = eo = y

x2 = ėo
ẋ1 = ėo = x2

ẋ2 = ëo = − 1

LC
x1 −

R

L
x2 +

1

LC
u
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Mathematical Modeling of Electrical Systems:
Example 1:

RLC circuit

Put equations in state-space form:[
ẋ1

ẋ2

]
=

[
0 1

− 1
LC −R

L

][
x1

x2

]
+

 0

1

LC

 u

y =
[
1 0

] [x1
x2

]
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Mathematical Modeling of Electrical Systems:
Example 2:

Cascaded RC circuit

We need to find the transfer function G (s) =
Eo(s)

Ei (s)
of the cascaded RC network.

RLC circuit

Applying the Kirchhoff’s voltage law:∑
V = 0
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Mathematical Modeling of Electrical Systems:
Example 2:

RLC circuit

Taking Laplace transform:

Eliminate I1(s) and I2(s). So,

Dr. Haitham El-Hussieny SPC318: System Modeling and Linear Systems 34 / 43



Mathematical Modeling of Electrical Systems:
Example 3:

Series/Parallel RLC

We need to find the transfer function G (s) =
Eo(s)

Ei (s)
of the cascaded RC network.

RLC circuit

Series/Parallel RLC

We need to find the equivalent impedance Z
for the connected components.
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Mathematical Modeling of Electrical Systems:
Equivelent Impedance:

ZR(s) = R
ZL(s) = Ls

Zc(s) =
1

Cs
Series/Parallel Impedance

Series

ZT = Z1 + Z2 + Z3

Parallel

1

ZT
=

1

Z1
+

1

Z2
+

1

Z3
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Mathematical Modeling of Electrical Systems:
Example 3:

RLC circuit

Equivalent Impedance of R and L:

1

ZT
=

1

Z1
+

1

Z2

1

ZT
=

1

R
+

1

Ls

ZT =
RLs

1 + RLs
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Mathematical Modeling of Electrical Systems:
Example 3:

RLC circuit

∑
V = 0

Ei (s) = I (s)ZT +
1

Cs
I (s) (1)

Eo(s) =
1

Cs
I (s) (2)

Divide (2) by (1) to find G (s) =
Eo(s)

Ei (s)
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Mathematical Modeling of Electromechanical Systems:
Mathematical Modeling DC Motor:

DC Motor

An actuator, converting electrical energy into rotational mechanical energy. For this
example, the input of the system is the voltage source (ν) applied to the motor’s armature,
while the output is the rotational speed of the shaft θ̇.

DC Motor

For the armature electrical circuit KVL:

V − Vemf − L
di

dt
− Ri = 0

The back emf, Vemf , is proportional to the
angular velocity of the shaft, θ̇, by a
constant factor Ke . So,

V − Ke θ̇ − L
di

dt
− Ri = 0
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Mathematical Modeling of Electromechanical Systems:
Mathematical Modeling DC Motor:

DC Motor

For the shaft mechanical system:

J θ̈ = Tmotor − bθ̇

bθ̇ is the viscous damping force.
The motor torque Tmotor is proportional
to the armature current i by a constant
factor Kt . So,

J θ̈ = Kt i − bθ̇

in SI units, the Kt and constants are
equal, that is, Kt = Ke = K .
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Mathematical Modeling of Electromechanical Systems:
Mathematical Modeling DC Motor:

DC Motor

By taking the Laplace transform,

V − K θ̇ − L
di

dt
− Ri = 0

V (s) = Ksθ(s) + Ls ∗ I (s) + RI (s) (1)

J θ̈ = K ∗ i − bθ̇

Js2θ(s) = KI (s) − bθ(s) (2)

Eliminate I (s) chose sθ(s) = W (s) as the
rotational speed:

G (s) =
W (s)

V (s)
=

K

(Js + b)(Ls + R) + K 2
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End of Lecture

Best Wishes

haitham.elhussieny@gmail.com
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