Electrical and Electronic Measurements Lecture 5: Analog Electronic Voltmeters

Dr. Haitham El-Hussieny

Electronics and Communications Engineering Faculty of Engineering (Shoubra) Benha University

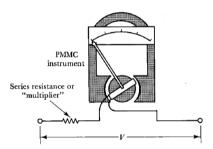
October 2018

Lecture Outline:

2 Emitter-Follower Voltmeter.

③ FET-input Voltmeter.

Table of Contents



2 Emitter-Follower Voltmeter.

3 FET-input Voltmeter.

Introduction:

- The electromechanical instruments have some limitations: as having low resistance (loading effect) and cannot measure very low voltages.
- The low input voltages need to be amplified to measurable levels and electronic circuits are required to offer high input resistance.
- Electronic circuits voltmeters with transistors, operational amplifiers (or op-amp) can be used to amplify small voltage and provide high input resistance.
- These analog circuits include:
 - Emitter-Follower Voltmeter.
 - 2 FET-input Voltmeter.

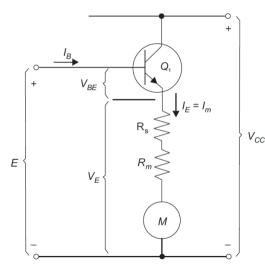
Table of Contents

Introduction.

2 Emitter-Follower Voltmeter.

3 FET-input Voltmeter.

Emitter-Follower Voltmeter:


- A BJT emitter follower is used where the PMMC and R_s are connected to the Emitter.
- The voltage to be measured, that is, *E*, is connected to the base of the transistor.
- The base current, I_b is:

$$I_b = rac{I_m}{eta}, \qquad eta: ({\sf Transistor \ gain})$$

• The input resistance, R_i is:

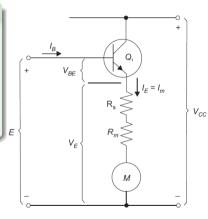
$$R_{in} \approx \frac{E}{I_b}$$

which is **much larger** than $R_s + R_m$ since I_b is small.

Dr. Haitham El-Hussieny

Emitter-Follower Voltmeter:

Example


A simple emitter-follower voltmeter with: $V_{CC} = 12 V$, $R_m = 2k\Omega$, $1 \ mA$ FSD meter current, and current gain $\beta = 50$.

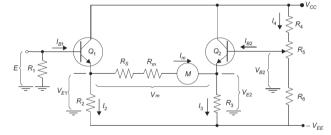
Determine :

(a) Appropriate multiplier resistance that can give FSD 5 V.(b) Input resistance

(a)

$$R_s = \frac{V_E}{I_m} - R_m = \frac{E - V_{BE}}{I_m} - R_m = \frac{5 - 0.7}{1 \ mA} - 2 = 2.3 \ kS$$

(b) $R_{in} = \frac{E}{I_b} = \beta \cdot \frac{E}{I_m} = 50 \cdot \frac{5}{1 \ mA} = 250 \ k\Omega$



2

Emitter-Follower Voltmeter:

- To reduce the drop V_{BE}, a one more emitter-follower and a voltage divider are used with a ±12 V dual polarity supply is connected.
- When E = 0, the resistance R_5 is adjusted to make $V_{E2} = 0.7$ and $V_m = 0$.
- When *E* is exist, the PMMC voltage is:

$$V_m = E - 0.7 - (-0.7) = E$$

Modified Emitter-Follower Voltmeter

• So, the voltage drop is removed.

Table of Contents

Introduction.

2 Emitter-Follower Voltmeter.

③ FET-input Voltmeter.

FET-input Voltmeter: Input FET input Emitter-follower attenuator stage voltmeter $+V_{cc}$ $800 \text{ k}\Omega \leq R_{p} \text{ SV}$ 1 V $100 \text{ k}\Omega \stackrel{<}{<}$ R_E Q_{2} V_{GS} Ε E_{G} 25 V_{s} V_{B2} >R. $60 \text{ k}\Omega$ $R_s + R_m$ Μ R_6 40 kΩ 🗧 >R. R R_1 R_2 I_3 $-V_{FF}$

Advantage:

The Field Effect Transistor (FET) provide extremely high input resistance.

Dr. Haitham El-Hussieny

Electrical and Electronic Measurements 10 / 1

End of Lecture

Best Wishes

haitham.elhussieny@feng.bu.edu.eg