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ABSTRACT Recently, unmanned aerial vehicles (UAVs) communications gained significant concentration
as a talented technology for future wireless communications using its remarkable advantages and broad
applicability. Furthermore, UAV networks’ high complex configurations and designs encourage researchers
to leverage relevant artificial intelligence (AI) techniques for better beyond fifth-generation (B5G)/sixth-
generation (6G) services. This article summarizes AI-aided UAV solutions designated for forthcoming
wireless networks. Besides, we deliver a comprehensive summary of machine learning (ML) approaches,
including their applications and valuable contributions towards effective UAV network implementations,
particularly advanced ML ones like bandits, federated learning (FL), meta-learning, etc. Finally, detailed
UAV communication-related future research scopes and challenges is highlighted.
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INDEX TERMS Unmanned aerial vehicles (UAVs), artificial intelligence (AI), deep learning (DL), meta-
learning, federated learning (FL), reinforcement learning (RL).

I. INTRODUCTION12

Beyond fifth-generation (B5G) & sixth-generation (6G)13

systems are primarily marked by ultra enormous connec-14

tions, high-speed transmission rates (Gbps/Tbps), and low15

latency. Achieving these goals plus the quick expansion of16

the internet of things (IoT) implementations is challenging,17

especially in high dynamic and heterogeneous scenarios.18

An advantageous technique is via embracing unmanned aerial19

vehicles (UAVs) as flying clients or airborne base stations20

(BSs). Also, UAV-aided communications can enhance the21

network in emergency scenarios via delivering quick service22

retrieval and offloading in enormously overcrowded designs23

or even stricken areas [1]. Most remarkable practical UAV24
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applications are shown in Figure 1. Still, the primary cons 25

of UAVs are their limited battery life and poor processing 26

power [2], [3], [4], [5], [6], [7], [8]. As in [9], UAVs can be 27

considered themost appropriate candidate to enhance the per- 28

formance and overcome the restrictions of ground networks, 29

so it surveyed research issues in UAV communication system. 30

Furthermore, most existing commercial UAVs maneu- 31

ver more than two hours before recharging their batteries. 32

Besides that, complicated algorithms require high central 33

processing unit (CPU) and graphics processing unit (GPU) 34

capacities, which cannot operate on board due to the tight 35

computing capacity of the UAV. Meanwhile, machine learn- 36

ing (ML) emerged as a sub-field of artificial intelligence 37

(AI), which has become common in scientific study, intro- 38

ducing a novel approach known as the black-box strategy, 39

which focuses solely on inputs and results. Additionally, the 40
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vast amount of data available today and the availability of41

high-performance processors and strong GPUs aided the42

development of UAVs. More Precisely, ML is one of the43

trending domains in which machines are given intelligence44

and become intelligent to do tasks more efficiently than45

human beings. Therefore, nowadays, ML is being employed46

in various industries more than expected. Several sub-fields47

of AI have also emerged, including deep learning (DL), rein-48

forcement learning (RL), federated learning (FL), etc., to han-49

dle different wireless communication difficulties, including50

UAV-related ones. DL utilizes layers of artificial perceptrons51

to simulate human thinking. It is significantly used in speech52

recognition, computer vision, and natural language process-53

ing. In addition, RL debuted in 1979 [10] and is a very active54

ML branch that has quickly evolved and matured, where an55

agent learns how to take proper actions to maximize his/her56

payoff. Hence, RL efficiently handles exploiting or exploring57

many available states. In contrast to DL, in robots, RL is58

commonly leveraged for path planning and learning complex59

tasks in robots. It’s also used in a range of decision-making60

problems in which a goal-oriented agent interacts with a61

specific environment. Furthermore, FL, proposed by Google62

in 2016 [11], was created to facilitate data-decentralized net-63

work systems. It secures a highly centralized model training64

on devices that share decentralized data without transferring65

the data to a local shared unit to put it. Specifically, it runs66

various ML algorithms throughout decentralized data infras-67

tructure.68

Hence, leveraging AI for various UAV-related problems is69

a challenging and intelligent solution to such problems due to70

several AI merits. Although conventional methods succeeded71

in solving such issues, their solutions are still high complex-72

ity and consume much time with low accuracy. Hence,it is73

vital to investigate efficient AI-assisted solutions, especially74

self-decision-making ones, outperforming classical ones in75

complicated and powerful scenarios. Originally, UAVs were76

intended to be operated by people. However, with the rise of77

ML, it has become fashionable to sell smart UAVs. In this78

case, AI can execute distinct tasks using data collected by79

drone sensors. Besides, ML-assisted solutions can enhance80

the energy efficiency of UAVs through efficient resource81

management and interference mitigation. Furthermore, ML-82

aided-well planned trajectory planning helps in equipping83

UAVs with the proper battery capacity to avoid obstacles and84

plan their route autonomously, which supports more clients85

and prolongs battery life time. For example, ‘‘follow me’’86

drones have recently become a huge hit in the market. These87

drones follow and film their owner with clever obstacle avoid-88

ance and target tracking algorithms, providing excellent video89

footage. Furthermore, vital UAV-related applications such as90

surveillance, traffic control, and landing site recognition are91

just a few applications that may be intelligently enhanced92

via distinct AI algorithms. In addition, leveraging existing93

state-of-the-art ML-based computer vision algorithms for94

picture enhancement approaches via UAVs applications is a95

promising direction. As a result, employing ML techniques96

FIGURE 1. UAV promising applications.

to automate complicated UAV-related tasks and intelligently 97

improve overall system efficiency can significantly increase 98

the overall UAV’s network performance. 99

We highlight most UAV-surveyed work and analyze them 100

as shown in Table 1. Although there are related survey 101

work [12], [13], [14], our paper is up to date and handles 102

new relatedAI topics such asmeta-learning and FL. Although 103

the works in [15] and [16] reviewed RL and DL approaches 104

for UAVs, they didn’t directly address up-to-date AI methods 105

for UAV applications, plus still some critical applications 106

are missing. However, all of the previous papers did not 107

directly address AI schemes for UAV applications. In [17], 108

offered a complete overview of certain possible AI applica- 109

tions in UAV-based networks by dividing it into supervised 110

and unsupervised approaches. Still, it has a restriction in that 111

it gives a broad overview of all techniques and does not 112

focus on individual lines. The work of [18] surveyed UAVs of 113

different designs with different AI techniques, but it did not 114

overview all methods. Furthermore, the work of [19] defined 115

vital topics connected to UAVs and contemporary machine 116

learning methods and presented a list of relevant courses and 117

surveys. It examines flocks from the perspective of several 118

open topics in whichMLmay be used to address various flock 119

concerns. Motivated by the enormous importance of UAVs 120

in future daily lives and the continuous development of AI 121

schemes, we investigate different AI-assisted UAV commu- 122

nication approaches. Furthermore, future related challenges 123

and possible solution scenarios are highlighted. This paper 124

is organized as follows: Section II surveys Era before AI. 125

Section III highlights different ML schemes and terminolo- 126

gies and their proper applications. Section IV goes over the 127

difficulties that ML-based solutions have solved. Section V 128

summarizes the future work, including different challenges. 129

Finally, Section VI concludes the paper. 130
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TABLE 1. Analysis AI-Enabled UAV communications.

II. NON AI-BASED SOLUTIONS131

Herein, we summarize different ordinary mathematical opti-132

mization solutions for UAV problems as shown in Table 2.133

In [20], the authors considered a single-cell scenario with134

many UAV-based users. To allow multi-UAV communica-135

tions, they investigated two transmission modes called UAV136

to network and UAV to UAV. To enable UAV-to-X to commu-137

nications, they designed a cooperative UAV sense and send138

protocol, then defined the subchannel allocation and UAV139

speed optimization issue for uplink sum-rate maximization.140

It maximized sum-rate uplink but in high complexity way.141

In [21], the researchers examined a multiuser communica-142

tion design, where a single UAV base station (BS) with a143

single antenna might support many ground users via non-144

orthogonal multiple access (NOMA). Hence, such an opti-145

mization problem is a non-convex max-min rate specified146

by various parameters such as total power, total bandwidth,147

UAV altitude, transmit antenna beam-width, users’ power,148

and bandwidth allocations. It optimized total power for sys-149

tem but with ideal assumptions. The authors of [22] looked150

at UAV-assisted wireless communication network systems151

with many energy-constrained ground terminals served by a152

UAV mounted access point (AP). They addressed two opti-153

mization challenges: a linear energy harvesting model and154

a realistic non-linear mode to optimize the ground terminals’ 155

minimal throughput. It optimized trajectory planning and 156

resource allocation but with ideal assumptions. In [23], the 157

authors jointly optimized both theUAV trajectory andNOMA 158

precoding in a UAV-aided NOMA network scenario, where 159

the UAV and BS simultaneously assist ground users (GUs). 160

It Optimized the UAV trajectory and maximized the sum rate 161

but with a long process time. In [24], the authors efficiently 162

optimized UAV trajectory via decoupling state variables from 163

timing variables. With the timing fixed, convex optimization 164

may be used to maximize the state variables, and a nonlinear 165

programming can be used to optimize the timing variables, 166

resulting in a bi-level optimization problem. It Optimized tra- 167

jectory planning but it neglected UAV battery consumption. 168

In [25], the authors presented a UAV-aided NOMA scheme 169

to achieve simultaneous wireless information and power 170

transfer and guarantee the secure transmission for passive 171

ground receivers, with nonlinear energy harvesting model, 172

the throughput of passive receivers is maximized. However, 173

it maximized the throughput using ideal settings. In [26], the 174

authors proposed a new spectrum sharing scenario for a cog- 175

nitive relay network. They investigated the optimization of 176

the UAV relay’s three-dimensional (3D) trajectory to improve 177

the communication throughput performance of the secondary 178
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network subject to the interference constraints of the pri-179

mary users (PUs). Still, they utilized ideal channel assump-180

tions in their model. In [27], the authors suggested a 3D181

geometry-based stochastic multi-input multi-output (MIMO)182

channel model for intelligent reflecting surface (IRS)-aided183

UAV communications. The IRS is mounted outside the build-184

ings to help the UAV transmitter reflect its signals to the185

ground level receiver and improve communication through186

passive beamforming. It looked at UBS consumers’ spatial187

cross-correlation functions (CCFs) to see how IRS affected188

the underlying propagation channel. It more realistic IRS-189

assisted UAV design but with high complexity design, and190

lacks deep channel characteristics. In [28], the authors pro-191

posed a system in which UAVs are served as carriers of wire-192

less power chargers to charge the energy-constrained devices193

to maximize the total amount of charging energy. Though,194

it introduced a higher charging amount delivery scenario with195

an ideal UAV’s trajectory path. In [29], the authors proposed196

a low-complexity users BS (UBS)-assisted sleep strategy for197

the small-cell network to fill in the coverage holes as the198

low energy-efficiency BSs on the ground are switched off.199

It boosted the system’s energy efficiencywith long-time com-200

putation. In [30], the authors suggested a multi-UAV-assisted201

mobile edge computing (MEC) system to solve the com-202

putation efficiency maximization problem, which considers203

both computation bits and energy usage. They improved204

user allocation, power allocation, and UAV path planning205

via partial computation offloading mode. It proposed effi-206

cient computation offloading and trajectory scheduling for207

multi-UAV but ignored processing time. In [31], the authors208

presented a method to maximize energy efficiency for user209

equipment transmission, and the position of UAVs should210

be carefully evaluated to ensure a high quality of experi-211

ence for user equipment with various priorities. It optimized212

UAV under several constraints but with ideal assumptions213

which are not practical. In [32], the authors suggested MEC214

as a UAV network where coalition leaders serve as servers215

to aid members with data computation. They looked into216

relative delay optimization in MEC-assisted UAV swarms.217

The computation offloading and channel access issues are218

jointly optimized according to the linked scheduling-resource219

allocation relationship.220

III. ML SCHEMES AND TERMINOLOGIES221

Various ML schemes have been discussed in several works of222

literature like [33], [34], [35], [36]. However, for transparency223

and absoluteness of the discussions, we shortly overview224

ML schemes and terminologies, including recent ones. The225

different learning schemes can be classified into one of the226

following varieties:227

A. SUPERVISED-LEARNING (SL)228

Here the model realizes a mapping formula, y = f (x),229

employing documented data that delivers specimens of input-230

output (x − y) relation. Such a model anticipates forthcom-231

ing output (yo) for a given trial input (xo). The learning232

process is performed by evaluating the probability of the 233

samples p(y|x) [33], [35]. Regression and classification are 234

the two primary SL-based predictive models. Regression 235

frameworks employ statistical approaches to formulate the 236

relation between descriptive variables and real-valued results. 237

It anticipates the output utilizing either linear or sigmoid 238

function approximations. However, classification models are 239

broadly-used ML schemes that categorize data samples into 240

one out of numerous available classes. Strictly speaking, 241

it maps an input to one of the probable outputs. Ordinary 242

classification models can be leveraged for UAV applications, 243

such as support vector machine (SVM), K-nearest neighbor 244

(KNN), and decision tree (DT) [37]. Besides, the current 245

advanced GPUs designs permit extra sophisticated and arti- 246

ficial neural network (ANN) for huge-sized datasets. This 247

Deep NN (DNN) design might incorporate convolutional 248

neural network (CNN), Recurrent neural network (RNN), 249

and Boltzmann machine have been used in many unexplored 250

areas in wireless networks [34], [36]. We shortly emphasize 251

the significant concepts of some widely-used categories as 252

follows: 253

• SVM: is a binary-classification model that distinguishes 254

between two distinct kinds of training samples [33]. 255

• KNN: it is mainly utilized for both classification and 256

regression tasks. At classification, we look for the K th
257

closest nearby training test sample xo then classify con- 258

cerning the bulk of the samples within the K th most 259

immediate neighbors. [33], [38]. Therefore, a particular 260

subject is atK = 1, where xo is designated to the class of 261

the nearest sample using any specially selected distance 262

function like theMinkowski norm Lp distance, etc. KNN 263

evaluation relies on the weight of K , where fewer val- 264

ues conduct more precise classification outcomes with 265

more noise sensitivity too. Also, more significant values 266

decline noise sensitivity with less distinctive classes’ 267

accuracy. 268

• DNN: one of the primary usages of DNN is function 269

approximation using weighted mixtures of accessible 270

units (neurons) in a series of layers (input, hidden, 271

and output ones). It is similar to brain processing with 272

its complete details. Various DNN designs have been 273

checked out in literature to reflect different functions, 274

like mapping and regression [34], [36]. 275

• RNN: is a subtype of NNs planned to formulate sequen- 276

tial data. The current network output is a function of the 277

present input and the prior output via training memory 278

cells. Checking distinct RNN architectures is promising 279

for examining time series data in mobile systems plus 280

their usage in speech recognition and NLP [34]. 281

• CNN: as the name suggests, CNNs can automatically 282

extract valuable features from raw input features more 283

profitable thanmanual or human-based ones. It supposes 284

locally connected filters rather than fully connected 285

structures between layers to grab the spatial correla- 286

tions [39]. CNN exploits two operations, namely convo- 287

lution and pooling. The convolution uses multiple filters 288
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TABLE 2. Mathematical optimization UAV solutions.

to extract features from the dataset and preserve their289

corresponding spatial information. Meanwhile, pooling290

(or sub-sampling) is leveraged to lower the dimen-291

sionality of the feature map via either max-pooling or292

average-pooling [34].293

B. UNSUPERVISED-LEARNING294

This procedure explores hidden patterns and configurations295

of the input data without data labels. Its main tasks are296

density estimation, clustering, and dimension reduction [33]. 297

(1) Clustering means spine samples into sets or clusters, 298

where at first each sample’s class is unknown within the 299

dataset. (2) Density estimation estimates the density of the 300

data distribution in the feature space, revealing several essen- 301

tial features in the high-density areas, such as the Gaussian 302

mixture model (GMM) technique. (3) Finally, dimension 303

reduction, such as principal component analysis (PCA) and 304

autoencoder, converts the data from a high-dimensional into 305
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low-dimensional space while preserving the data’s primary306

arrangements. We summarize crucial unsupervised learning307

methods as follows:308

• K-means: is a simple clustering technique that locatesm309

sample optimal points in the feature space of m clusters.310

Each sample is designated to one cluster concerning311

the distance between individual points and represen-312

tatives. Still, picking the optimal m-points is an NP-313

hard problem that can be estimated by operating a less314

complex iterative scheme via erratically determining315

initial m-points and allocating all samples to the initial316

k-points. After that, we obtain the mean per cluster and317

replicate the process until convergence occurs [40].318

• GMM: belongs to density estimation methods. Its main319

target is to fit the data into a mixture (weighted linear320

combination) of k Gaussian probability distributions to321

address complex cluster arrangements. k manages the322

complexity of GMM, where incrementing k permits323

GMM to match any continuous distribution accurately.324

However, the larger k, the greater the risk of overfitting325

and the time required to estimate the mixing parameters326

using the log-likelihood method [41].327

C. REINFORCEMENT-LEARNING (RL)328

encompasses a variety of human-like learning processes329

based on trial-and-error. To achieve long-term gains, an RL330

player is rewarded or penalized for his actions. The agent331

receives recursive environmental feedback to assist in deter-332

mining the appropriate actions at each step by following a333

policy that translates agent behavior from state to action.With334

uncertainty in the environment, a Markov decision process335

(MDP) may be used to describe the system’s dynamics and336

maximize the objectives. [35].337

• Q-Learning: is a prototype reinforcement learning338

strategy in which the agent does not need to know or339

have a model of the environment. The agent calculates340

and stores a Q-value for each stateaction pair in the341

Q-table from training. The Q-value is a long-term pay-342

off. However, it is not ideal for big-scale issues because343

tables get too vast when the problems become more344

complex [42].345

D. SELF LEARNING TECHNIQUES346

1) MULTI-ARMED BANDITS (MABs)347

The MAB problem is one of the sequence allocating. The348

player/learner tries to get the highest payout from a series349

of slot machine arms, where the payouts are distributed ran-350

domly. The title MAB arises from the notion of a gambler351

playing a group of slot machines inside a casino. He should352

decide, which machine/arm to play, the number of times,353

and the rank to play each. This is to determine whether to354

continue with a slot machine or change to another one. The355

tradeoff means the balance between exploiting the selection356

that gave the highest payoffs, current knowledge (the best-357

selected arm), and exploring new arms (unselected or rarely358

chosen elements,i.e, unknown environment) that might pro- 359

vide higher future profits. Although the old study of bandit 360

problems since the 1930s, the exploration-exploitation con- 361

flict appears in several modern applications, like advertis- 362

ing, website optimization, resource allocation, and network 363

routing [43]. Due to its merits, MAB algorithms have been 364

used for different wireless communication problems such 365

as D2D communications [44], [45], [46], [47], WSNs [48], 366

Relay probing [49], IRS [50], hybrid band communications 367

[51], [52], [53], mmWave beamforming [54], [55], [56], 368

UAV communications [57], [58], etc. Generally, MAB can 369

be divided into the following categories:- 370

• Single Player MAB: Within a restricted number of 371

trials, a single player seeks to locate and pick the largest 372

long-term reward arm [43]. First, the player gathers 373

information about each slot machine (exploration) by 374

inspecting a variety of accessible arms and finishing 375

with the arm that pays the most. As a result, the player 376

strives to strike a balance between playing with the arm 377

with the highest possible payout thus far, i.e. exploita- 378

tion, and exploring other arms, i.e. exploration. The 379

player can precisely forecast each arm’s due reward 380

over a longer horizon time (investigation term). Accord- 381

ing to the allocation of awards, the MAB problem is 382

stochastic or adversarial [43]. In stochastic bandits, the 383

rewards of each arm are pulled independently (i.i.d), 384

from unknown distributions to the players. Upper con- 385

fidence bound (UCB), TS are the top most stochastic 386

MAB algorithms [45]. In adversarial MAB, on the other 387

hand, the rewards are determined by the hostile envi- 388

ronment like in ε greedy, Exponential-weight algorithm 389

for exploration and exploitation (EXP3), and EXP4 390

algorithms [43]. 391

• Multi-Player (MP)-MAB: All players act in sequen- 392

tial trials simultaneously to obtain an anonymous 393

reward [58]. If more than one player picks a similar 394

arm, collisions happen. Later, players might distribute 395

the rewards or disregard them upon the collision rule. 396

Upon the mutual information among the players, mul- 397

tiplayer MAB schemes are classified as centralized and 398

decentralized. In decentralized setup, each player self- 399

ishly plays his future trials based on his collected reward 400

remarks without data interchange with other players 401

[43], [58]. In the centralized model, though, the game 402

is run collectively by exchanging complete findings. 403

Compared to their centralized counterparts, collisions 404

are unavoidable in a decentralized configuration. As a 405

result, each player acts selfishly to investigate collisions 406

and tries to bypass them during interaction with the 407

environment to increase his profit. 408

• Contextual Bandits: Here, the player gains his awards 409

from taking actions (selecting arms) over a sequence 410

of trials considering side information about each arm 411

called context [59], [60]. Hence, within each trial: 1) The 412

player acts based on the current round’s context (feature 413

vector) and the previously earned prizes. 2) The player is 414
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solely aware of the prize for the chosen arm. Contextual415

MAB (CMAB) is used in various essential applications,416

including online recommendations, mobile health appli-417

cations, and clinical studies. Exploration is necessary to418

improve learning performance, whereas supervised ML419

provides the features needed to encode context. As a420

result, CMABs are the standard compromise between421

supervised learning and RL. The CMAB problem is usu-422

ally handled by providing a linear relationship between423

the created reward and the circumstances in which it424

occurs like in LinUCB algorithm [43].425

• Sleeping Bandits: Here, the action set is time-varying426

i.e., non stationary. Hence, at every round, both the427

reward process and the arm availability might be mod-428

eled as Markovian, adversarial or stochastic. Some arms429

are out from the game during the rounds. Hence, the430

performance loss is w.r.t. the best action as a benchmark431

which might not exist in some rounds [61].432

• Combinatorial Bandits: It is a multi-variable bandit433

game where the player selects values from a group of434

variables [62], not from a single one. The number of435

probable selections per iteration is exponential in the436

number of discrete variables. Its applications include437

shortest-path problems, ranking, and multitask bandits.438

• Cascaded Bandits: Here, the learner investigates a439

recommended list from the first to the last item with440

unknown attraction probabilities and then chooses the441

first attractive one [63]. The beforehand things are442

nonattractive, and the proceeding ones are still unob-443

served. The optimal list is the one with K items with444

a maximum probability of attractive items. At time t ,445

the learner recommends to the client a list of K items446

out of total L ones and then observes the item’s index447

that the client selects. If the user selects an item, the448

learner receives a reward of one. The learner’s target449

is to maximize his cumulative payoff or minimize his450

total loss/regret concerning the list of K ’s most precious451

items.452

2) FEDERATED LEARNING453

FL allows its models to learn from various data sources across454

several places (e.g., local data centers, a central server) with-455

out sharing any training data. This permits personal data to456

be stored locally, lowering the risk of personal data breaches.457

There are two phases in ML: training and inference. Local458

ML models are trained on local heterogeneous datasets dur-459

ing training. Users of an ML application, for example, can460

discover errors in the ML program’s predictions and rectify461

them. Local training datasets are created in each user’s device462

due to this. The variables of the models are then regularly463

shared between these regional data centers. Many models464

encrypt these parameters before sending them. Data samples465

from the local area are not shared. This increases data security466

and protection. A worldwide model has been developed.467

Finally, the global model’s properties are shared with local468

data centers so that they may incorporate the global model469

into their ML local models. A model is kept on the user 470

device during inference so that predictions may be made fast 471

utilizing the model on the user device [64]. In [65], a joint 472

algorithm of UAV placement, power control, transmission 473

time, model accuracy, bandwidth allocation, and computing 474

resources, namely energy-efficient FL (E2FL) has been pro- 475

posed, aiming to minimize the total energy consumption of 476

the aerial server and users. 477

3) META-LEARNING 478

It is an ML sub-field known as ‘‘learning to learn.’’ It is 479

used to enhance the outcomes and performance of a learning 480

algorithm bymodifying specific components of the algorithm 481

depending on the results of testing experiments. Here, all 482

of the training dataset, the learning methodology, and the 483

algorithm’s parameters affect the learning model’s perfor- 484

mance. Hence, this necessitates a large number of tests. Meta 485

learning methods help speed up the learning process, where 486

better forecasts are made in less time. Researchers may use 487

meta-learning to determine which algorithms produce the 488

best predictions from datasets. Learning algorithms’ infor- 489

mation/foreknowledge is used as input to meta-learning algo- 490

rithms. Then, they have predictions and offer data regarding 491

the performance of these learning algorithms as an output. 492

Metadata is data about data for non-technical consumers, 493

such as size, resolution, style, date generated, and owner 494

of a picture in a learning model. As a conclusion, meta- 495

learning means learning new activities more quickly by using 496

metadata [66]. 497

4) TRANSFER LEARNING 498

Its goal is to help target learners enhance their performance on 499

target domains by transferring information from several but 500

related source domains. The need for a significant amount 501

of target-domain data to generate target learners can be 502

decreased. Transfer learning has become a prominent and 503

promising field in machine learning due to its wide range of 504

applications. Domain adaptation is modifying one or more 505

source domains to transfer information and improve the target 506

learner’s performance. The domain adaptationmethod, which 507

tries to narrow the gap across disciplines, is frequently used 508

in transfer learning [67]. 509

5) ADAPTIVE LEARNING 510

Here, the consequence of a decision is frequently unknown, 511

and the effects might fluctuate over time. If choice results 512

reflect a usual range of outcomes or signify a shift in the 513

reward environment, they should have a significant impact 514

on behavior and learning. As a result, practical learning and 515

decision-making need the capacity to assess both expected 516

and unexpected uncertainty (connected to the variability of 517

findings) (associated with the variability of the environment). 518

Understanding the computational and neurological basis and 519

impacts of these two forms of luck and the interconnec- 520

tions between them is critical for understanding adaptive 521

learning [68]. 522
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IV. ML-BASED SOLUTIONS523

A. SL SOLUTIONS524

Table 3 presents K-means and DL UAV solutions that solve525

several problems in UAV applications. In [69], the authors526

used NOMA to investigate a UAV-assisted VLC and con-527

structed a combination issue of power allocation and UAV528

placement to optimize the total rate of all users, subject529

to limitations on power allocation, and user quality of ser-530

vice, and UAV position. It maximized the sum rate of all531

NOMA users but with a fixed UAV assumption. In [70], the532

authors proposed a distributed algorithm that allows UAVs to533

dynamically learn their optimal 3D locations and associate534

with ground users while maximizing the network’s sum rate.535

When compared to both a centralized sub-optimal solution536

and a distributed approach based on the closest UAV asso-537

ciation, the network’s sum rate is improved but does not538

save the power of the system. [71], the authors presented539

a case study to demonstrate the effectiveness of intelligent540

UAV-assisted vehicular edge computing (VEC) architecture,541

a smart UAV-assisted VEC system envisioned to satisfy 6G542

Vehicle to Everything (V2X) requirements and provide 3D543

adaptive service coverage. In [72], the authors proposed a544

blockchain and AI-empowered telesurgery system towards545

6G, which is a self-manageable, secure, transparent, and546

trustable system with massive Ultra-Reliable Low-Latency547

Communication (uRLLC). In [73], a novel UAV aerial video548

dataset (ManipalUAVid) is introduced for semantic segmen-549

tation. On the ManipalUAVid dataset, the performance of550

four semantic segmentation techniques is evaluated: condi-551

tional random Field, U-Net, Fully convolutional network,552

and DeepLabV3+. It introduced more clear shots, but it553

neglected processing time. In [74], with reduced model sizes554

and quicker computing speed, a novel lightweight AMC555

(LightAMC) technique is developed, which introduces a scal-556

ing factor for each neuron in a convolutional neural network557

(CNN) and enforces the sparsity of scaling factors using558

compressed sensing. It reduced model sizes and accelerated559

computation but with ideal assumptions.560

DL solutions In [75], the authors offer an approach that561

uses semi-supervised techniques to categorize an unlabeled562

training set that is utilized for training a CNN using multiple563

training strategies, as the number of labeled samples available564

to train the classifier decreases in contrast to the amount565

of unlabeled data. In [76], the authors suggest an effective566

alternative technique for allowing the UAV to independently567

establish its location without relying on the global positioning568

system (GPS) or sending messages.569

DRL Based Solutions: Table 4 shows different solutions570

for UAV applications using DRL. In [77], the authors inves-571

tigated the difficulty of designing a 3D UAV trajectory572

and band allocation that considers the UAV’s energy usage573

and the fairness among ground users. First, model a quad-574

rotor UAV’s energy consumption as a function of its 3D575

mobility. The fair throughput is then defined and maxi-576

mized within restricted energy, depending on the fairness and577

total throughput. It automatically adjusted of UAV’s Flight 578

speed but it worked with a single UAV. The work in [78], 579

investigated the cellular networks using UAVs, in which a 580

UAV operates as a flying relay to unload a portion of the 581

data flow from one congested cell to another. It used a 582

plausible air-to-ground channel model and a practical geo- 583

graphical distribution of data traffic. The quality of service 584

is described as a UAV utility function based on a packet 585

loss ratio-related consumers’ cost function to indicate the 586

UAV’s performance improvements. To optimize the UAV 587

utility function, a joint optimization problem must be solved. 588

It succeeded in maximizing the throughput, but it did not 589

consider all users that used the system. Furtheremore, the 590

framework in [80] investigated the robust and secure trans- 591

mission for Reconfigurable intelligent surface (RIS)-aided 592

mmWave UAV communications. It proposes an algorithm 593

to effectively tackle the concerning issues by maximizing 594

the sum secrecy rate of all legitimate users. It gets results 595

by combining UAV trajectory optimization and active (pas- 596

sive) beamforming. A better performance can be achieved 597

compared to a variety of benchmarks. It improved the sum 598

secrecy rate of the system but with neglecting processing 599

time computations. In [79], due to complicated limitations, 600

it suggested a UAV trajectory planning model for data col- 601

lection intending to minimize expired data packets across the 602

sensor system and then relaxed the cryptic original issue into 603

a min-max-age of information (AoI)-optimal route scheme. 604

It solved the UAV path planning with unknown channel 605

states but with specific area. In [81], the authors studied 606

the topic of providing the optimum quality of service (QoS) 607

in UAV-assisted cellular networks. To effectively optimize 608

the usefulness of the UAV, it has suggested a combination 609

design of access point selection andUAVpath planning. It has 610

presented a DRL-based method to teach the UAV to seek 611

places with superior channel states and a game theory-based 612

access point selection algorithm to allow users to select the 613

correct access point autonomously based on the cost function. 614

It minimized the content delivery delay but battery life time 615

remained short. In [82], the authors investigated The The 616

cache-enabling UAV NOMA networks,, which UAV base 617

stations aid, and are designed for a mix of augmented reality 618

and traditional multimedia applications. DRL optimizes user 619

association, NOMA power allocation, UAV deployment, and 620

UAV caching placement altogether to reduce content delivery 621

time. It controlled continuous action space but with single 622

agent. In [83], it proposed a UAV-aided MEC framework, 623

as several UAVs. with varying trajectories fly over the target 624

region and assist the ground based user equipment. By opti- 625

mizing each UAV’s trajectory and offloading decision from 626

all the user equipment, a multi-agent DRL-based trajectory 627

control algorithm can jointly maximize the fairness among all 628

the user equipment and the fairness of user equipment-load 629

of each UAV, as well as minimize the energy consumption 630

of all the user equipment. It managing the trajectory of each 631

UAV independently but it did not take cooperative decision. 632
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TABLE 3. k-means and DL-based UAV solutions.

In [84], the topic of reducing the normalized weighted sum of633

AoI for a UAV-assisted wireless network in which a UAV col-634

lects status update packets from energy-constrained ground635

nodes was discussed by the authors. The problem was first636

started as amixed-integer program. It then suggested a convex637

optimization-based technique for obtaining the UAV’s ideal638

flight trajectory and time instants on updates for a given639

scheduling strategy. It optimized the UAV’s flight trajectory640

and minimized the normalized weighted sum of AoI but it641

used single agent. In [85], the authors looked at how to642

establish UAV-assisted MEC networks in a short amount643

of time while simultaneously serving several users. It also644

presented an end-to-end DRL model to learn and optimize645

task offloading and UAV trajectory control. The proposed646

approach optimizes many criteria, including computing delay647

and energy consumption of the UAV-assisted MEC network,648

by controlling the fraction of offloading jobs and UAV tra-649

jectory. It optimized the offloading task ratio and minimized650

the overall energy consumption in UAV but used single agent.651

In [86], the authors investigated the usage of UAVs to assist652

intelligent transportation system applications. It looked at the653

topic of minimizing the predicted weighted sum AoI of cars654

in a vehicular network by optimizing the trajectory of various655

UAVs and scheduling policies. It minimized the expected656

weighted sum AoI but did not consider power consumption.657

In [87], the authors suggested a cloud-assisted joint charging658

scheduling and energy management framework for UAVs,659

and then used multi-agent DRL to design and implement660

cooperative energy sharing across towers, resulting in intel-661

ligent energy sharing. It can be seen that the two approaches662

are linked and that they should be controlled, coordinated,663

and harmonized by a centralized orchestration manager, with664

fairness, energy efficiency, and cost effectiveness in mind.665

In [88], the authors looked at multi-dimensional resource666

management for vehicular networks using UAVs. The macro667

eNodeB and UAV, both mounted with MEC servers, work668

together to make association choices and assign appropri-669

ate resources to vehicles to enable on-demand resource670

access effectively. It formulated the resource allocation at671

the MEC servers as a distributive optimization problem to672

maximize the number of offloaded tasks while satisfying their673

heterogeneous QoS requirements and then solved it with 674

a probabilistic multi-agent deep deterministic policy gradi- 675

ent (PMADDPG) based method because there is no central 676

controller. In [89], as a MEC framework with a renew- 677

able power supply, the researchers devised a UAV-assisted 678

compute offloading technique. The suggested model consid- 679

ers energy arrival instability, stochastic computing demands, 680

and a changing channel state. Due to the state’s complex- 681

ity, UAV-assisted computed offloading for MEC based on 682

DRL was proposed to reduce the overall cost, which is the 683

weighted sum of delay, energy consumption, and bandwidth 684

cost. In [90], the authors provided a space-air-ground inte- 685

grated network edge/cloud computing design for offloading 686

computation-intensive applications even considering remote 687

energy and computation restrictions, where flying UAVs pro- 688

vide near-user edge computing and satellites provide cloud 689

computing access. In [91], to determine the best solution for 690

energy-harvesting time scheduling in UAV-assisted device 691

To device (D2D) communications, the authors suggested a 692

unique model based on DRL. The UAV is considered to fly 693

around a central point to make the system model more realis- 694

tic. The D2D users move in a continuous random walk. The 695

channel state information encountered during each time slot 696

is randomly time-variant.In [92], the authors presented a UAV 697

system that uses wireless energy transfer to collect data from 698

various geographical regions and deliver it to its destination 699

modeled mobility, energy storage, and data storage patterns 700

to account for time-variant system states detected by the UAV 701

and their effects on decision-making. In [93], for the air- 702

ground coordinated communications system, the authors sug- 703

gested aerial to ground (A2G)-PMADDPG. By coordinating 704

both UAV-BSs and GUs, the proposed algorithm allows UAV- 705

BSs to offer equitable communication services for GUs on the 706

ground. Each GU maximizes its throughput by selecting 707

the appropriate UAV-BS to access, and each GU maximizes 708

the fair throughput by designing a trajectory. Simulation 709

results show that the approach outperforms existing bench- 710

marks regarding fairness index, total throughput, and mini- 711

mum throughput. A NOMA-based UAV-assisted network is 712

gaining traction as a viable solution for overcoming various 713

Like For 5G and B5G wireless networks, high spectrum 714
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TABLE 4. DRL-based UAV solutions.
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efficiency and enormous connections are required, especially715

when IoT devices are placed in a disaster region. It maxi-716

mized the average system secrecy rate but did not calculate717

power consumption. In [96], the authors proposed federated718

multi-agent deep deterministic policy gradient (F-MADDPG)719

based trajectory optimization algorithm to maximize the720

average spectrum efficiency. Because of difficulty coordi-721

nate between UAVs to improve the performance in terms722

of Wireless Energy Transfer (WET) and Wireless Informa-723

tion Transmission (WIT), authors of [95], proposed a Multi-724

Agent Deep Reinforcement Learning (MADRL) method,725

called TEAM to divide UAVs into two teams to behave726

as data collectors and energy transmitters to maximize the727

throughput of IoT devices, minimize the energy utilization of728

UAVs, and enhance the energy transfer.In [94], the authors729

leveraged MADRL method to optimize the task of energy730

transfer between Flying Energy Sources (FESs) and UAVs731

to maximize the sum-energy received by all UAVs, optimize732

the energy loading process and compute the most energy-733

efficient trajectories.734

B. USL SOLUTIONS735

In [97], small cell networks (SCNs) provide a cost-effective736

coverage option for high-data-rate wireless applications.737

However, with SCNs, appropriate management of backhaul738

lines to small cell BSs is a difficult task (SCBSs). Therefore,739

researchers use the notion of usingUAVs to offer a connection740

between SCBSs and the core network to construct a solid741

backhaul link, where perfect line-of-sight (LoS) communica-742

tion between the SCBSs and the core network plays a critical743

role. We examine the relationship between SCBSs and UAVs744

by considering a variety of communication-related aspects,745

such as the data rate limit and backhaul bandwidth resources.746

In [98], the authors planned predictive models with one-class747

support vector machines (OC-SVM) and K-means cluster-748

ing to detect eavesdropping attacks. They also propose a749

framework for creating features of testing data from wireless750

signals and another framework for generating training data to751

prepare datasets for training predictive models.752

C. RL SOLUTIONS753

In Table 5, we focus on RL-based UAV solutions that solved754

several problems in UAV applications. In [99], the authors755

concentrated on a UAV-assisted wireless network where users756

can be scheduled to receive the uplink transmission from757

either an aerial or a terrestrial base station. The average long-758

term transmit power required by the users was reduced by759

dynamically optimizing user association and power alloca-760

tion in each time slot. It enhanced power allocation and user761

association using UAV. but with fixed resource allocation.762

In [100], the authors considered the problem of content deliv-763

ery to vehicles on road segments with either overloaded or764

no available communication infrastructure, resorting to tools765

such as proximal policy optimization, along with a set of766

crafted algorithms to solve our problem. It delivered high-767

bandwidth contents robustly but with short battery life time.768

In [101], the authors proposed Q-learning- based adaptive 769

geographic routing to improve the converging speed and 770

resource utilization of the geographic routing approaches in 771

vehicular ad hoc networks (VANET). Autonomous vehicles 772

(AVs) are deployed to guide the global transmission path 773

and a Q-learning algorithm is exploited to help each node 774

choose the best next hop in a specific area. In [102], the 775

researchers looked at using UAV-assisted edge caching to 776

help terrestrial vehicle networks transmit high bandwidth 777

content files. It created a combination caching and trajectory 778

optimization issue to judge content location, content distribu- 779

tion, andUAV trajectory to improve total network throughput. 780

Due to complex constraints, it chose the optimal path scheme 781

but did not consider saving power. In [104], The authors 782

suggested an online RL UAV-assisted wireless caching sys- 783

tem that optimizes the UAV trajectory, transmission power, 784

and caching content scheduling all at the same time. It used 785

the notion of request queues in wireless caching networks to 786

define the combined optimization of online UAV trajectory 787

and caching content delivery as an infinite-horizon ergodic 788

to produce a QoS-optimal solution. It achieved online opti- 789

mization of UAV trajectory but it did not calculate time con- 790

sumption. In [105], for delay-tolerant wireless sensor network 791

(WSN) applications, the authors suggested an autonomous 792

UAV-based data collection system. The goal is to use a self- 793

trained UAV as a flying mobile unit to gather data from 794

ground sensor nodes geographically spread over a particular 795

geographical area during a predetermined period. In [106], 796

a UAV-assisted computation offloading model was developed 797

by the authors, in which a group of UAVs flies about while 798

offering value-added edge computing services. Multi-agent 799

RL algorithms offered the target helper for the next task 800

execution and the proportion of bandwidth allotted to com- 801

munication, where two agents choose the target helper and 802

bandwidth allocation. In [107], the authors recommended that 803

several UAVs’ paths be designed based on users’ mobility 804

data forecast. Combining trajectory design and power control 805

challenge maximized the instantaneous total transmit rate 806

while meeting customers’ rate requirements. The authors 807

of [108] investigated cache-enabled UAV cellular networks 808

with NOMA support for colossal access. A mobile UAV BS, 809

which caches some popular contents for wireless backhaul 810

connection traffic unloading, assists in transmitting of a high 811

number of multimedia material for ground users. In [109], 812

the authors developed an onboard deep Q-network to reduce 813

total data packet loss of sensing devices in UAV scenar- 814

ios. In [110], the authors created an RL issue by modeling 815

the motion-trajectory as MDP and using the UAV as the 816

learning agent. It then proposed a pair of novel trajectory 817

optimization algorithms based on stochastic modeling and 818

reinforcement learning, which allowed the UAV to optimize 819

its flight trajectory without requiring system identification. 820

In [111], the authors used for cooperative search and res- 821

cue, UAVs and unmanned surface vehicles constitute a cog- 822

nitive mobile computer network, where RL is utilized to 823

design search paths and increase communication throughput. 824
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TABLE 5. RL-based UAV solutions.

The authors of [1] proposed the challenge of joint non-825

convex 3D deployment and dynamic movement of UAVs to826

maximize ground users’ total mean opinion score in quality827

of experience-driven deployment and dynamic movement of828

numerous UAVs. In [112], the 3D UAV aided mmWAve829

model was investigated to simulate beam selection and envi-830

ronmental responsiveness and regularly get near optimal831

evaluations by learning from current circumstances. In [113], 832

the authors developed a NOMA-based UAV-assisted net- 833

works emergency communications architecture, in which 834

catastrophe situations are split into three major categories: 835

emergency areas, large regions, and dense areas. In disaster 836

regions, a UAV outfitted with an antenna array might offer 837

wireless coverage to several densely scattered devices. 838
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D. MAB-BASED SOLUTIONS839

Herein, we focus on the UAVMAB-based solution, as shown840

in Table 6. In [114], the authors looked at how a rotary-wing841

UAV can function as a wireless base station for emergency842

communication in a post-disaster environment with an uncer-843

tain user distribution. The goal of the described optimization844

challenge is to determine the ideal path that starts and ends845

at the same spot to serve as many people as feasible with846

limited battery capacity. This issue was reformulated using847

two extended MAB-enabled path planning algorithms. UAVs848

have been used as a critical alternative for ground communi-849

cations in catastrophe zones such as earthquakes and exposed850

forests because of their benefits. In [115], the authors looked851

at radio resource allocation for a post-disaster surveillance852

system built with a cognitive radio network (CRN). They853

solved it with a dynamic spectrum access system and MAB.854

It maximized the total system rate but with ideal setting855

assumption. In [58], the difficulty of choosing a gatewayUAV856

is solved. The major goal is to maximize the UAV relays’857

long-term average data rates while lowering the flight’s bat-858

tery cost, utilizing mmWave backhauling, which uses the859

30 300 GHz band and antenna beamforming. In [116], the860

authors offered the MAB solution to improve the perfor-861

mance of any mobile networked device. Their results also862

showed that the 3D method optimizes technical resources863

compared to current single and 2-Dimensional algorithms,864

resulting in near to ideal performance throughout the average865

duration through machine learning of actual UAV commu-866

nication settings. In [117], the authors used power control in867

combination with channel selection to examine anti-jamming868

vehicle to vehicle (V2V) communication in connected and869

autonomous vehicle (CAV) networks. The overall framework870

of cognitive risk control (CRC) is well tailored to assess and871

address the jamming problem by bringing a brain-inspired872

research instrument, cognitive dynamic system (CDS). Power873

control is specifically carried out via RL, with the results874

being assessed by a task-switch control module. The MAB875

issue is constructed based on the risk assessment when per-876

forming the channel-selection procedure. Still, their studied877

structure is simplified and needs to be more practical.878

In [118], the plan target could be a secondary user (SU)879

network that has got to maximize the overall framework880

rate by selecting on ideal transmitting power value on each881

channel, and at the same moment, don’t lead to any harmful882

interference to the receivers of the PU organize as investigates883

the radio resource allocation for a post- disaster surveillance884

system which is constructed using CRN through dynamic885

spectrum access (DSA) system using MAB.886

E. FL-BASED SOLUTIONS887

In [119], a multi-UAV system has been designed to study888

picture categorization in area exploration scenarios. FL has889

been used to complete image classification tasks, and local890

updates from all UAVs are broadcast to the ground fusion cen-891

ter (GFC) over fading wireless channels, based on the local892

model learned from pictures captured by an onboard camera 893

at each UAV suggested FL-aided classification. As shown 894

in Figure 2, FL is the least technique that is used in UAV 895

problems, although it is a promising technique. 896

FIGURE 2. ML percentage usage in UAVs.

V. CHALLENGES AND FUTURE WORK 897

AI utilization for UAV systems has driven to present numer- 898

ous development and savvy arrangements for an endless run 899

of problems as shown in Figure 3. This section briefly surveys 900

themajor vital open subjects specified already for UAV issues 901

summarized in Figure 4. From our study, it is clear that more 902

than 40% of researchers used DRL because of its common 903

policy and there are a lot of data to be utilized, but we believe 904

that meta and federated learning will give better accurate and 905

faster results if researchers develop it as it is a hot area to 906

go through and find more methods to solve several problems. 907

Drones are used to obtain confidential data, such as weather 908

forecasting, storm tracking, and precision agriculture. They 909

can even be used for surveillance purposes, especially in 910

search and rescue. Future promising related research issues 911

are as follow:- 912

• UAV mounted RIS: Recently, UAV-mounted RIS is 913

under investigation to further improve wireless cover- 914

age and accuracy position. It is a promising research 915

direction to leverage different AI techniques, especially 916

online learning to enhance different related problems 917

such as joint optimization and path planning [127]. 918

• Multi UAV path planning: Most current UAV path 919

planning handles a single UAV scenario with a static 920

environment. Still, multi UAV trajectory planningwithin 921

a dynamic environment via online learning is a vital 922

future direction. For example, how to avoid obstacles, 923

timing to select the best path, and prevent trajectory 924

interference using AI optimization schemes. 925

• UAV for V2X: Although previous work utilized UAVs 926

to make smart traffic control, the techniques used are 927

DL-based, which consumes offline training time. It is 928

promising to leverage self-learning or meta learning 929

schemes proper for such difficulty. 930

• Meta learning aided UAVs: Since the number of users 931

served by UAVs is increasing rapidly, we need to accel- 932

erate the learning process (i.e., reducing learning time) 933

using advanced ML such as meta learning. This can 934
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TABLE 6. MAB based UAV solutions.

FIGURE 3. AI-assisted UAV applications.

enhance/accelerate node search methods, collaborative935

UAVs, and Cognitive Radio aided UAVs, and multipath936

planning.937

• UAV aided Wireless Power Transfer: Recently, UAVs 938

can be used to provideWPT to mobile devices that lacks 939

energy. Hence, in that case online load balancing should 940
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FIGURE 4. UAV challenges.

be implemented to distribute the energy fairly between941

the users. Such a topic is a promising future direction942

too, especially when optimizing the path of UAV to serve943

more users.944

• MECaidedUAVs: Lately, bothMEC andUAV are com-945

bined to simultaneously extend and facilitate UAV usage946

in different fields. Moreover, advanced AI techniques947

can enhance such a framework, especially FL ones at948

multi UAV dynamic scenarios with effective resource949

management.950

• Security/Privacy: Designing the position of a UAV951

takes into account the existence of several eavesdroppers952

to enhance the secrecy performance. Enhancing and953

upgrading the current designs of cognitive anti-jamming954

V2V communications, and improving the inter-system955

relationship between radar tracking and vehicular com-956

munication. Advanced AI schemes should strengthen957

data security and user privacy against eavesdroppers.958

• Energy consumption: Current related research aims959

to perform multi objective optimization to prolong the960

UAV battery lifetime to serve more users and maximize961

the sum rate. Hence, energy consumption is a open AI962

related issue that needs more investigation, especially963

for multi UAv scenarios.964

• UAV aided network caching: Caching and computing965

can be incorporated into UAV-based integrated system966

to provide uRLLC in the emergencies. This can be done967

via up to date ML techniques proper to each specific968

scenario.969

Ultimately, we suggest using online learning instead of970

offline learning in all previous research topics as it will be971

more efficient and with high response and accurate decisions972

on urgent issues.973

VI. CONCLUSION974

In this survey, we deeply investigated newML-based research975

direction to improve the performance of UAV networks ben-976

eficial to a large variety of potential applications such as977

smart cities and airborne BS deployment, etc. Beforehand,978

we highlighted different ML types such as SL, USL, RL,979

FL, etc. Then, we surveyed distinct ML-aided UAV solutions980

according to the utilized ML category. Finally, we focused 981

on MAB-assisted solutions as a promising direction due to 982

various MAB types, proper to different scenarios. We offered 983

a series of concluding observations for each of the strategies 984

we looked at, outlining the existing limits and concerns as 985

well as a set of interesting open problems. Finally, we sum- 986

marized future directions and provided attractive UAV-related 987

research topics that need more investigation, especially 988

AI-aided ones. 989
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