IEEE Access

Multidisciplinary  Rapid Review : Open Access Journal

IEEE VEHICULAR TECHNOLOGY SOCIETY SECTION

Received 31 July 2022, accepted 23 August 2022, date of publication 29 August 2022, date of current version 8 September 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3202956

==l survey

Al-Enabled UAV Communications: Challenges

and Future Directions

AMIRA O. HASHESH'-2, SHERIEF HASHIMA 34, (Senior Member, IEEE), ROKAIA M. ZAKI“'1-3,
MOSTAFA M. FOUDA “%7, (Senior Member, IEEE), KOHEI HATANO 3-8,

AND ADLY S. TAG ELDIEN!

! Department of Electrical Engineering, Faculty of Engineering at Shoubra, Benha University, Cairo 11672, Egypt

2High Institute for Engineering & Technology—Obour, Cairo 11828, Egypt

3Computational Learning Theory Team, RIKEN-Advanced Intelligence Project (AIP), Fukuoka 819-0395, Japan
“Engineering Department, Nuclear Research Center (NRC), Egyptian Atomic Energy Authority, Inshas, Cairo 13759, Egypt

SHigher Institute of Engineering and Technology, Kafr El-Shaikh 33514, Egypt

SDepartment of Electrical and Computer Engineering, College of Science and Engineering, Idaho State University, Pocatello, ID 83209, USA

7Center for Advanced Energy Studies (CAES), Idaho Falls, ID 83401, USA
8Faculty of Arts and Science, Kyushu University, Fukuoka 819-0395, Japan

Corresponding authors: Sherief Hashima (sherief.hashima@riken.jp) and Mostafa M. Fouda (mfouda@ieee.org)

This work was supported by JSPS KAKENHI Grant Numbers JP21K 14162 and JP22H03649, Japan.

ABSTRACT Recently, unmanned aerial vehicles (UAVs) communications gained significant concentration
as a talented technology for future wireless communications using its remarkable advantages and broad
applicability. Furthermore, UAV networks’ high complex configurations and designs encourage researchers
to leverage relevant artificial intelligence (AI) techniques for better beyond fifth-generation (B5G)/sixth-
generation (6G) services. This article summarizes Al-aided UAV solutions designated for forthcoming
wireless networks. Besides, we deliver a comprehensive summary of machine learning (ML) approaches,
including their applications and valuable contributions towards effective UAV network implementations,
particularly advanced ML ones like bandits, federated learning (FL), meta-learning, etc. Finally, detailed
UAV communication-related future research scopes and challenges is highlighted.

INDEX TERMS Unmanned aerial vehicles (UAVs), artificial intelligence (AI), deep learning (DL), meta-

learning, federated learning (FL), reinforcement learning (RL).

I. INTRODUCTION

Beyond fifth-generation (B5SG) & sixth-generation (6G)
systems are primarily marked by ultra enormous connec-
tions, high-speed transmission rates (Gbps/Tbps), and low
latency. Achieving these goals plus the quick expansion of
the internet of things (IoT) implementations is challenging,
especially in high dynamic and heterogeneous scenarios.
An advantageous technique is via embracing unmanned aerial
vehicles (UAVs) as flying clients or airborne base stations
(BSs). Also, UAV-aided communications can enhance the
network in emergency scenarios via delivering quick service
retrieval and offloading in enormously overcrowded designs
or even stricken areas [1]. Most remarkable practical UAV
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applications are shown in Figure 1. Still, the primary cons
of UAVs are their limited battery life and poor processing
power [2], [3], [4], [5], [6], [7], [8]. As in [9], UAVs can be
considered the most appropriate candidate to enhance the per-
formance and overcome the restrictions of ground networks,
so it surveyed research issues in UAV communication system.

Furthermore, most existing commercial UAVs maneu-
ver more than two hours before recharging their batteries.
Besides that, complicated algorithms require high central
processing unit (CPU) and graphics processing unit (GPU)
capacities, which cannot operate on board due to the tight
computing capacity of the UAV. Meanwhile, machine learn-
ing (ML) emerged as a sub-field of artificial intelligence
(AI), which has become common in scientific study, intro-
ducing a novel approach known as the black-box strategy,
which focuses solely on inputs and results. Additionally, the
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vast amount of data available today and the availability of
high-performance processors and strong GPUs aided the
development of UAVs. More Precisely, ML is one of the
trending domains in which machines are given intelligence
and become intelligent to do tasks more efficiently than
human beings. Therefore, nowadays, ML is being employed
in various industries more than expected. Several sub-fields
of Al have also emerged, including deep learning (DL), rein-
forcement learning (RL), federated learning (FL), etc., to han-
dle different wireless communication difficulties, including
UAV-related ones. DL utilizes layers of artificial perceptrons
to simulate human thinking. It is significantly used in speech
recognition, computer vision, and natural language process-
ing. In addition, RL debuted in 1979 [10] and is a very active
ML branch that has quickly evolved and matured, where an
agent learns how to take proper actions to maximize his/her
payoff. Hence, RL efficiently handles exploiting or exploring
many available states. In contrast to DL, in robots, RL is
commonly leveraged for path planning and learning complex
tasks in robots. It’s also used in a range of decision-making
problems in which a goal-oriented agent interacts with a
specific environment. Furthermore, FL, proposed by Google
in 2016 [11], was created to facilitate data-decentralized net-
work systems. It secures a highly centralized model training
on devices that share decentralized data without transferring
the data to a local shared unit to put it. Specifically, it runs
various ML algorithms throughout decentralized data infras-
tructure.

Hence, leveraging Al for various UAV-related problems is
a challenging and intelligent solution to such problems due to
several Al merits. Although conventional methods succeeded
in solving such issues, their solutions are still high complex-
ity and consume much time with low accuracy. Hence,it is
vital to investigate efficient Al-assisted solutions, especially
self-decision-making ones, outperforming classical ones in
complicated and powerful scenarios. Originally, UAVs were
intended to be operated by people. However, with the rise of
ML, it has become fashionable to sell smart UAVSs. In this
case, Al can execute distinct tasks using data collected by
drone sensors. Besides, ML-assisted solutions can enhance
the energy efficiency of UAVs through efficient resource
management and interference mitigation. Furthermore, ML-
aided-well planned trajectory planning helps in equipping
UAVs with the proper battery capacity to avoid obstacles and
plan their route autonomously, which supports more clients
and prolongs battery life time. For example, “follow me”
drones have recently become a huge hit in the market. These
drones follow and film their owner with clever obstacle avoid-
ance and target tracking algorithms, providing excellent video
footage. Furthermore, vital UAV-related applications such as
surveillance, traffic control, and landing site recognition are
just a few applications that may be intelligently enhanced
via distinct Al algorithms. In addition, leveraging existing
state-of-the-art ML-based computer vision algorithms for
picture enhancement approaches via UAVs applications is a
promising direction. As a result, employing ML techniques
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FIGURE 1. UAV promising applications.

to automate complicated UAV-related tasks and intelligently
improve overall system efficiency can significantly increase
the overall UAV’s network performance.

We highlight most UAV-surveyed work and analyze them
as shown in Table 1. Although there are related survey
work [12], [13], [14], our paper is up to date and handles
new related Al topics such as meta-learning and FL. Although
the works in [15] and [16] reviewed RL and DL approaches
for UAVs, they didn’t directly address up-to-date Al methods
for UAV applications, plus still some critical applications
are missing. However, all of the previous papers did not
directly address Al schemes for UAV applications. In [17],
offered a complete overview of certain possible Al applica-
tions in UAV-based networks by dividing it into supervised
and unsupervised approaches. Still, it has a restriction in that
it gives a broad overview of all techniques and does not
focus on individual lines. The work of [18] surveyed UAVs of
different designs with different Al techniques, but it did not
overview all methods. Furthermore, the work of [19] defined
vital topics connected to UAVs and contemporary machine
learning methods and presented a list of relevant courses and
surveys. It examines flocks from the perspective of several
open topics in which ML may be used to address various flock
concerns. Motivated by the enormous importance of UAVs
in future daily lives and the continuous development of Al
schemes, we investigate different Al-assisted UAV commu-
nication approaches. Furthermore, future related challenges
and possible solution scenarios are highlighted. This paper
is organized as follows: Section II surveys Era before AL
Section III highlights different ML schemes and terminolo-
gies and their proper applications. Section IV goes over the
difficulties that ML-based solutions have solved. Section V
summarizes the future work, including different challenges.
Finally, Section VI concludes the paper.
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TABLE 1. Analysis Al-Enabled UAV communications.

Reference Main Direction Comparison| Future Contribution
Challenge
[13] ANN Only Review ANN in general | v v Presented comprehensive tutorials on the use of

ods and Applications for
UAV

not specified with UAV. ANNSs-based ML for enabling various applications.
It reviewed ANN-assisted UAV and talked about it
briefly.
[15] DL only Deep Learning Meth- v Reviewed reported uses and applications of deep

learning schemes for UAVs, including the most rele-
vant developments as well as their performances and
limitations.

[16] ML ML assisted Wireless

UAV Networks

v Presented an specified overview of ML applications
in aerial wireless networks with ML concepts and
categories.

[14] ML ML assisted UAV

v Presented a classification of ML techniques based
on the communication and network aspects assisted-
UAVs and reviewed different topics of UAVs.

[17] RL and FL Only RL and FL assisted UAV

v Explored a research direction where ML techniques
are used to enhance the performance of UAV net-
works, then reviewed RL and FL only with UAV
applications.

[19] ML ML assisted UAV Flocks | v

v Surveyed several issues relating to UAV flocks for-
mation, maintenance, and related challenges, it dis-
cussed from UAV flocks, not a single UAV scenario.

This paper Al assisted UAV v

v Surveys all Al techniques utilized to enhance the
performance of UAV and reviews researchers’ effort
to solve problems with these techniques, then shows
the difference between them as reviewed them in
categories depended on Al technique and showed
which one is the most used. Finally, highlights hot
research areas in UAV and our opinion in promising
future techniques.

1. NON AI-BASED SOLUTIONS

Herein, we summarize different ordinary mathematical opti-
mization solutions for UAV problems as shown in Table 2.
In [20], the authors considered a single-cell scenario with
many UAV-based users. To allow multi-UAV communica-
tions, they investigated two transmission modes called UAV
to network and UAV to UAV. To enable UAV-to-X to commu-
nications, they designed a cooperative UAV sense and send
protocol, then defined the subchannel allocation and UAV
speed optimization issue for uplink sum-rate maximization.
It maximized sum-rate uplink but in high complexity way.
In [21], the researchers examined a multiuser communica-
tion design, where a single UAV base station (BS) with a
single antenna might support many ground users via non-
orthogonal multiple access (NOMA). Hence, such an opti-
mization problem is a non-convex max-min rate specified
by various parameters such as total power, total bandwidth,
UAV altitude, transmit antenna beam-width, users’ power,
and bandwidth allocations. It optimized total power for sys-
tem but with ideal assumptions. The authors of [22] looked
at UAV-assisted wireless communication network systems
with many energy-constrained ground terminals served by a
UAV mounted access point (AP). They addressed two opti-
mization challenges: a linear energy harvesting model and
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a realistic non-linear mode to optimize the ground terminals’
minimal throughput. It optimized trajectory planning and
resource allocation but with ideal assumptions. In [23], the
authors jointly optimized both the UAV trajectory and NOMA
precoding in a UAV-aided NOMA network scenario, where
the UAV and BS simultaneously assist ground users (GUs).
It Optimized the UAV trajectory and maximized the sum rate
but with a long process time. In [24], the authors efficiently
optimized UAV trajectory via decoupling state variables from
timing variables. With the timing fixed, convex optimization
may be used to maximize the state variables, and a nonlinear
programming can be used to optimize the timing variables,
resulting in a bi-level optimization problem. It Optimized tra-
jectory planning but it neglected UAV battery consumption.
In [25], the authors presented a UAV-aided NOMA scheme
to achieve simultaneous wireless information and power
transfer and guarantee the secure transmission for passive
ground receivers, with nonlinear energy harvesting model,
the throughput of passive receivers is maximized. However,
it maximized the throughput using ideal settings. In [26], the
authors proposed a new spectrum sharing scenario for a cog-
nitive relay network. They investigated the optimization of
the UAV relay’s three-dimensional (3D) trajectory to improve
the communication throughput performance of the secondary
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network subject to the interference constraints of the pri-
mary users (PUs). Still, they utilized ideal channel assump-
tions in their model. In [27], the authors suggested a 3D
geometry-based stochastic multi-input multi-output (MIMO)
channel model for intelligent reflecting surface (IRS)-aided
UAV communications. The IRS is mounted outside the build-
ings to help the UAV transmitter reflect its signals to the
ground level receiver and improve communication through
passive beamforming. It looked at UBS consumers’ spatial
cross-correlation functions (CCFs) to see how IRS affected
the underlying propagation channel. It more realistic IRS-
assisted UAV design but with high complexity design, and
lacks deep channel characteristics. In [28], the authors pro-
posed a system in which UAVs are served as carriers of wire-
less power chargers to charge the energy-constrained devices
to maximize the total amount of charging energy. Though,
it introduced a higher charging amount delivery scenario with
an ideal UAV’s trajectory path. In [29], the authors proposed
a low-complexity users BS (UBS)-assisted sleep strategy for
the small-cell network to fill in the coverage holes as the
low energy-efficiency BSs on the ground are switched off.
It boosted the system’s energy efficiency with long-time com-
putation. In [30], the authors suggested a multi-UAV-assisted
mobile edge computing (MEC) system to solve the com-
putation efficiency maximization problem, which considers
both computation bits and energy usage. They improved
user allocation, power allocation, and UAV path planning
via partial computation offloading mode. It proposed effi-
cient computation offloading and trajectory scheduling for
multi-UAV but ignored processing time. In [31], the authors
presented a method to maximize energy efficiency for user
equipment transmission, and the position of UAVs should
be carefully evaluated to ensure a high quality of experi-
ence for user equipment with various priorities. It optimized
UAV under several constraints but with ideal assumptions
which are not practical. In [32], the authors suggested MEC
as a UAV network where coalition leaders serve as servers
to aid members with data computation. They looked into
relative delay optimization in MEC-assisted UAV swarms.
The computation offloading and channel access issues are
jointly optimized according to the linked scheduling-resource
allocation relationship.

Ill. ML SCHEMES AND TERMINOLOGIES

Various ML schemes have been discussed in several works of
literature like [33], [34], [35], [36]. However, for transparency
and absoluteness of the discussions, we shortly overview
ML schemes and terminologies, including recent ones. The
different learning schemes can be classified into one of the
following varieties:

A. SUPERVISED-LEARNING (SL)

Here the model realizes a mapping formula, y = f(x),
employing documented data that delivers specimens of input-
output (x — y) relation. Such a model anticipates forthcom-
ing output (y,) for a given trial input (x,). The learning
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process is performed by evaluating the probability of the
samples p(y|x) [33], [35]. Regression and classification are
the two primary SL-based predictive models. Regression
frameworks employ statistical approaches to formulate the
relation between descriptive variables and real-valued results.
It anticipates the output utilizing either linear or sigmoid
function approximations. However, classification models are
broadly-used ML schemes that categorize data samples into
one out of numerous available classes. Strictly speaking,
it maps an input to one of the probable outputs. Ordinary
classification models can be leveraged for UAV applications,
such as support vector machine (SVM), K-nearest neighbor
(KNN), and decision tree (DT) [37]. Besides, the current
advanced GPUs designs permit extra sophisticated and arti-
ficial neural network (ANN) for huge-sized datasets. This
Deep NN (DNN) design might incorporate convolutional
neural network (CNN), Recurrent neural network (RNN),
and Boltzmann machine have been used in many unexplored
areas in wireless networks [34], [36]. We shortly emphasize
the significant concepts of some widely-used categories as
follows:

+ SVM: is a binary-classification model that distinguishes
between two distinct kinds of training samples [33].

« KNN: it is mainly utilized for both classification and
regression tasks. At classification, we look for the K th
closest nearby training test sample x, then classify con-
cerning the bulk of the samples within the K most
immediate neighbors. [33], [38]. Therefore, a particular
subjectis at K = 1, where x,, is designated to the class of
the nearest sample using any specially selected distance
function like the Minkowski norm L, distance, etc. KNN
evaluation relies on the weight of K, where fewer val-
ues conduct more precise classification outcomes with
more noise sensitivity too. Also, more significant values
decline noise sensitivity with less distinctive classes’
accuracy.

o DNN: one of the primary usages of DNN is function
approximation using weighted mixtures of accessible
units (neurons) in a series of layers (input, hidden,
and output ones). It is similar to brain processing with
its complete details. Various DNN designs have been
checked out in literature to reflect different functions,
like mapping and regression [34], [36].

« RNN: is a subtype of NNs planned to formulate sequen-
tial data. The current network output is a function of the
present input and the prior output via training memory
cells. Checking distinct RNN architectures is promising
for examining time series data in mobile systems plus
their usage in speech recognition and NLP [34].

o CNN: as the name suggests, CNNs can automatically
extract valuable features from raw input features more
profitable than manual or human-based ones. It supposes
locally connected filters rather than fully connected
structures between layers to grab the spatial correla-
tions [39]. CNN exploits two operations, namely convo-
lution and pooling. The convolution uses multiple filters
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TABLE 2. Mathematical optimization UAV solutions.

| Reference Scenario ML Scheme Objective Limitations

[20] UAV-to-X Commu- | Several UAVs send their | Iterative Uplink sum-rate maximization High complexity
nications collected data to BS subchannel

allocation

and  speed

optimization

algorithm

(ISASOA)

[21] UAV+NOMA UAVs as BS Mathematical | Optimize total power and BW Ideal assumption
optimization and high
algorithm complexity

[22] UAV-aided net- | UAV-mounted AP serves | Mathematical | Optimize trajectory planning and | Ideal setting
works multiple ground termi- | optimization resource allocation
nals algorithm

[23] UAV+ NOMA

cooperative UAV and BS
to simultaneously serve

Iterative op-
timization al-

Optimize the UAV trajectory and
maximize sum rate

Long time com-
putation

GUs gorithm

[24] UAV optimization decoupling state vari- | Mathematical | Optimize trajectory planning Neglects
ables from timing vari- | optimization UAV battery
ables algorithm consumption

[25] UAV+NOMA

UAV-aided NOMA net-
work

Iterative op-
timization al-

Maximize throughput of proposed
system

Ideal scenario

small-cell Network

tion

sleep strategy

gorithm
[26] UAV based spec- | Joint 3D trajectory and | Mathematical | Maximum throughput outage Ideal channel as-
trum sharing resource  optimization | optimization sumption
for a UAV relay-assisted | schemes
CRN
[27] UAV+IRS 3D MIMO based Chan- | Spatial CCFs | More realistic IRS assisted UAV | high complexity,
nel Model design. lacks deep
channel
characteristics.
[28] UAV-Assisted [oT Wireless Charging MDP Higher charging amount delivery Ideal UAV’s tra-
jectory path
[29] UBS-enhanced | BS-assisted communica- | Assisted Boost the energy efficiency Long Time com-

putation

[30] UAV aided MEC MEC Energy consump- | Iterative op- | Propose efficient computation of- | Ignores process-
tion timization al- | floading and trajectory scheduling | ing time
gorithm for multi-UAV
[31] Multi-UAV assisted | Offloading setup to opti- | Heuristic UAV optimization under several | Ideal
MEC mize energy Joint Power | constrains assumptions,
and Quality not practical
(HIPQ)
algorithm
[32] UAV swarms MEC Scheduling urgent | Distributed Distributed UAV  optimization | Ideal scenario
missions offloading coalitions
algorithm

to extract features from the dataset and preserve their
corresponding spatial information. Meanwhile, pooling
(or sub-sampling) is leveraged to lower the dimen-
sionality of the feature map via either max-pooling or
average-pooling [34].

B. UNSUPERVISED-LEARNING

This procedure explores hidden patterns and configurations
of the input data without data labels. Its main tasks are
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density estimation, clustering, and dimension reduction [33].
(1) Clustering means spine samples into sets or clusters,
where at first each sample’s class is unknown within the
dataset. (2) Density estimation estimates the density of the
data distribution in the feature space, revealing several essen-
tial features in the high-density areas, such as the Gaussian
mixture model (GMM) technique. (3) Finally, dimension
reduction, such as principal component analysis (PCA) and
autoencoder, converts the data from a high-dimensional into
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low-dimensional space while preserving the data’s primary
arrangements. We summarize crucial unsupervised learning
methods as follows:

« K-means: is a simple clustering technique that locates m
sample optimal points in the feature space of m clusters.
Each sample is designated to one cluster concerning
the distance between individual points and represen-
tatives. Still, picking the optimal m-points is an NP-
hard problem that can be estimated by operating a less
complex iterative scheme via erratically determining
initial m-points and allocating all samples to the initial
k-points. After that, we obtain the mean per cluster and
replicate the process until convergence occurs [40].

o GMM: belongs to density estimation methods. Its main
target is to fit the data into a mixture (weighted linear
combination) of k Gaussian probability distributions to
address complex cluster arrangements. k manages the
complexity of GMM, where incrementing k permits
GMM to match any continuous distribution accurately.
However, the larger k, the greater the risk of overfitting
and the time required to estimate the mixing parameters
using the log-likelihood method [41].

C. REINFORCEMENT-LEARNING (RL)

encompasses a variety of human-like learning processes
based on trial-and-error. To achieve long-term gains, an RL
player is rewarded or penalized for his actions. The agent
receives recursive environmental feedback to assist in deter-
mining the appropriate actions at each step by following a
policy that translates agent behavior from state to action. With
uncertainty in the environment, a Markov decision process
(MDP) may be used to describe the system’s dynamics and
maximize the objectives. [35].

e Q-Learning: is a prototype reinforcement learning
strategy in which the agent does not need to know or
have a model of the environment. The agent calculates
and stores a Q-value for each stateaction pair in the
Q-table from training. The Q-value is a long-term pay-
off. However, it is not ideal for big-scale issues because
tables get too vast when the problems become more
complex [42].

D. SELF LEARNING TECHNIQUES

1) MULTI-ARMED BANDITS (MABs)

The MAB problem is one of the sequence allocating. The
player/learner tries to get the highest payout from a series
of slot machine arms, where the payouts are distributed ran-
domly. The title MAB arises from the notion of a gambler
playing a group of slot machines inside a casino. He should
decide, which machine/arm to play, the number of times,
and the rank to play each. This is to determine whether to
continue with a slot machine or change to another one. The
tradeoff means the balance between exploiting the selection
that gave the highest payoffs, current knowledge (the best-
selected arm), and exploring new arms (unselected or rarely

VOLUME 10, 2022

chosen elements,i.e, unknown environment) that might pro-
vide higher future profits. Although the old study of bandit
problems since the 1930s, the exploration-exploitation con-
flict appears in several modern applications, like advertis-
ing, website optimization, resource allocation, and network
routing [43]. Due to its merits, MAB algorithms have been
used for different wireless communication problems such
as D2D communications [44], [45], [46], [47], WSNs [48],
Relay probing [49], IRS [50], hybrid band communications
[51], [52], [53], mmWave beamforming [54], [55], [56],
UAV communications [57], [58], etc. Generally, MAB can
be divided into the following categories:-

o Single Player MAB: Within a restricted number of
trials, a single player seeks to locate and pick the largest
long-term reward arm [43]. First, the player gathers
information about each slot machine (exploration) by
inspecting a variety of accessible arms and finishing
with the arm that pays the most. As a result, the player
strives to strike a balance between playing with the arm
with the highest possible payout thus far, i.e. exploita-
tion, and exploring other arms, i.e. exploration. The
player can precisely forecast each arm’s due reward
over a longer horizon time (investigation term). Accord-
ing to the allocation of awards, the MAB problem is
stochastic or adversarial [43]. In stochastic bandits, the
rewards of each arm are pulled independently (i.i.d),
from unknown distributions to the players. Upper con-
fidence bound (UCB), TS are the top most stochastic
MAB algorithms [45]. In adversarial MAB, on the other
hand, the rewards are determined by the hostile envi-
ronment like in € greedy, Exponential-weight algorithm
for exploration and exploitation (EXP3), and EXP4
algorithms [43].

o Multi-Player (MP)-MAB: All players act in sequen-
tial trials simultaneously to obtain an anonymous
reward [58]. If more than one player picks a similar
arm, collisions happen. Later, players might distribute
the rewards or disregard them upon the collision rule.
Upon the mutual information among the players, mul-
tiplayer MAB schemes are classified as centralized and
decentralized. In decentralized setup, each player self-
ishly plays his future trials based on his collected reward
remarks without data interchange with other players
[43], [58]. In the centralized model, though, the game
is run collectively by exchanging complete findings.
Compared to their centralized counterparts, collisions
are unavoidable in a decentralized configuration. As a
result, each player acts selfishly to investigate collisions
and tries to bypass them during interaction with the
environment to increase his profit.

o Contextual Bandits: Here, the player gains his awards
from taking actions (selecting arms) over a sequence
of trials considering side information about each arm
called context [59], [60]. Hence, within each trial: 1) The
player acts based on the current round’s context (feature
vector) and the previously earned prizes. 2) The player is
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solely aware of the prize for the chosen arm. Contextual
MAB (CMAB) is used in various essential applications,
including online recommendations, mobile health appli-
cations, and clinical studies. Exploration is necessary to
improve learning performance, whereas supervised ML
provides the features needed to encode context. As a
result, CMABs are the standard compromise between
supervised learning and RL. The CMAB problem is usu-
ally handled by providing a linear relationship between
the created reward and the circumstances in which it
occurs like in LinUCB algorithm [43].

o Sleeping Bandits: Here, the action set is time-varying
i.e., non stationary. Hence, at every round, both the
reward process and the arm availability might be mod-
eled as Markovian, adversarial or stochastic. Some arms
are out from the game during the rounds. Hence, the
performance loss is w.r.t. the best action as a benchmark
which might not exist in some rounds [61].

o Combinatorial Bandits: It is a multi-variable bandit
game where the player selects values from a group of
variables [62], not from a single one. The number of
probable selections per iteration is exponential in the
number of discrete variables. Its applications include
shortest-path problems, ranking, and multitask bandits.

o Cascaded Bandits: Here, the learner investigates a
recommended list from the first to the last item with
unknown attraction probabilities and then chooses the
first attractive one [63]. The beforehand things are
nonattractive, and the proceeding ones are still unob-
served. The optimal list is the one with K items with
a maximum probability of attractive items. At time ¢,
the learner recommends to the client a list of K items
out of total L ones and then observes the item’s index
that the client selects. If the user selects an item, the
learner receives a reward of one. The learner’s target
is to maximize his cumulative payoff or minimize his
total loss/regret concerning the list of K’s most precious
items.

2) FEDERATED LEARNING

FL allows its models to learn from various data sources across
several places (e.g., local data centers, a central server) with-
out sharing any training data. This permits personal data to
be stored locally, lowering the risk of personal data breaches.
There are two phases in ML: training and inference. Local
ML models are trained on local heterogeneous datasets dur-
ing training. Users of an ML application, for example, can
discover errors in the ML program’s predictions and rectify
them. Local training datasets are created in each user’s device
due to this. The variables of the models are then regularly
shared between these regional data centers. Many models
encrypt these parameters before sending them. Data samples
from the local area are not shared. This increases data security
and protection. A worldwide model has been developed.
Finally, the global model’s properties are shared with local
data centers so that they may incorporate the global model
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into their ML local models. A model is kept on the user
device during inference so that predictions may be made fast
utilizing the model on the user device [64]. In [65], a joint
algorithm of UAV placement, power control, transmission
time, model accuracy, bandwidth allocation, and computing
resources, namely energy-efficient FL (E2FL) has been pro-
posed, aiming to minimize the total energy consumption of
the aerial server and users.

3) META-LEARNING

It is an ML sub-field known as ‘“learning to learn.” It is
used to enhance the outcomes and performance of a learning
algorithm by modifying specific components of the algorithm
depending on the results of testing experiments. Here, all
of the training dataset, the learning methodology, and the
algorithm’s parameters affect the learning model’s perfor-
mance. Hence, this necessitates a large number of tests. Meta
learning methods help speed up the learning process, where
better forecasts are made in less time. Researchers may use
meta-learning to determine which algorithms produce the
best predictions from datasets. Learning algorithms’ infor-
mation/foreknowledge is used as input to meta-learning algo-
rithms. Then, they have predictions and offer data regarding
the performance of these learning algorithms as an output.
Metadata is data about data for non-technical consumers,
such as size, resolution, style, date generated, and owner
of a picture in a learning model. As a conclusion, meta-
learning means learning new activities more quickly by using
metadata [66].

4) TRANSFER LEARNING

Its goal is to help target learners enhance their performance on
target domains by transferring information from several but
related source domains. The need for a significant amount
of target-domain data to generate target learners can be
decreased. Transfer learning has become a prominent and
promising field in machine learning due to its wide range of
applications. Domain adaptation is modifying one or more
source domains to transfer information and improve the target
learner’s performance. The domain adaptation method, which
tries to narrow the gap across disciplines, is frequently used
in transfer learning [67].

5) ADAPTIVE LEARNING

Here, the consequence of a decision is frequently unknown,
and the effects might fluctuate over time. If choice results
reflect a usual range of outcomes or signify a shift in the
reward environment, they should have a significant impact
on behavior and learning. As a result, practical learning and
decision-making need the capacity to assess both expected
and unexpected uncertainty (connected to the variability of
findings) (associated with the variability of the environment).
Understanding the computational and neurological basis and
impacts of these two forms of luck and the interconnec-
tions between them is critical for understanding adaptive
learning [68].
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IV. ML-BASED SOLUTIONS

A. SL SOLUTIONS

Table 3 presents K-means and DL UAV solutions that solve
several problems in UAV applications. In [69], the authors
used NOMA to investigate a UAV-assisted VLC and con-
structed a combination issue of power allocation and UAV
placement to optimize the total rate of all users, subject
to limitations on power allocation, and user quality of ser-
vice, and UAV position. It maximized the sum rate of all
NOMA users but with a fixed UAV assumption. In [70], the
authors proposed a distributed algorithm that allows UAVs to
dynamically learn their optimal 3D locations and associate
with ground users while maximizing the network’s sum rate.
When compared to both a centralized sub-optimal solution
and a distributed approach based on the closest UAV asso-
ciation, the network’s sum rate is improved but does not
save the power of the system. [71], the authors presented
a case study to demonstrate the effectiveness of intelligent
UAV-assisted vehicular edge computing (VEC) architecture,
a smart UAV-assisted VEC system envisioned to satisfy 6G
Vehicle to Everything (V2X) requirements and provide 3D
adaptive service coverage. In [72], the authors proposed a
blockchain and Al-empowered telesurgery system towards
6G, which is a self-manageable, secure, transparent, and
trustable system with massive Ultra-Reliable Low-Latency
Communication (uURLLC). In [73], a novel UAV aerial video
dataset (ManipalUAVid) is introduced for semantic segmen-
tation. On the ManipalUAVid dataset, the performance of
four semantic segmentation techniques is evaluated: condi-
tional random Field, U-Net, Fully convolutional network,
and DeepLabV3+. It introduced more clear shots, but it
neglected processing time. In [74], with reduced model sizes
and quicker computing speed, a novel lightweight AMC
(LightAMC) technique is developed, which introduces a scal-
ing factor for each neuron in a convolutional neural network
(CNN) and enforces the sparsity of scaling factors using
compressed sensing. It reduced model sizes and accelerated
computation but with ideal assumptions.

DL solutions In [75], the authors offer an approach that
uses semi-supervised techniques to categorize an unlabeled
training set that is utilized for training a CNN using multiple
training strategies, as the number of labeled samples available
to train the classifier decreases in contrast to the amount
of unlabeled data. In [76], the authors suggest an effective
alternative technique for allowing the UAV to independently
establish its location without relying on the global positioning
system (GPS) or sending messages.

DRL Based Solutions: Table 4 shows different solutions
for UAV applications using DRL. In [77], the authors inves-
tigated the difficulty of designing a 3D UAV trajectory
and band allocation that considers the UAV’s energy usage
and the fairness among ground users. First, model a quad-
rotor UAV’s energy consumption as a function of its 3D
mobility. The fair throughput is then defined and maxi-
mized within restricted energy, depending on the fairness and
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total throughput. It automatically adjusted of UAV’s Flight
speed but it worked with a single UAV. The work in [78],
investigated the cellular networks using UAVs, in which a
UAV operates as a flying relay to unload a portion of the
data flow from one congested cell to another. It used a
plausible air-to-ground channel model and a practical geo-
graphical distribution of data traffic. The quality of service
is described as a UAV utility function based on a packet
loss ratio-related consumers’ cost function to indicate the
UAV’s performance improvements. To optimize the UAV
utility function, a joint optimization problem must be solved.
It succeeded in maximizing the throughput, but it did not
consider all users that used the system. Furtheremore, the
framework in [80] investigated the robust and secure trans-
mission for Reconfigurable intelligent surface (RIS)-aided
mmWave UAV communications. It proposes an algorithm
to effectively tackle the concerning issues by maximizing
the sum secrecy rate of all legitimate users. It gets results
by combining UAV trajectory optimization and active (pas-
sive) beamforming. A better performance can be achieved
compared to a variety of benchmarks. It improved the sum
secrecy rate of the system but with neglecting processing
time computations. In [79], due to complicated limitations,
it suggested a UAV trajectory planning model for data col-
lection intending to minimize expired data packets across the
sensor system and then relaxed the cryptic original issue into
a min-max-age of information (Aol)-optimal route scheme.
It solved the UAV path planning with unknown channel
states but with specific area. In [81], the authors studied
the topic of providing the optimum quality of service (QoS)
in UAV-assisted cellular networks. To effectively optimize
the usefulness of the UAYV, it has suggested a combination
design of access point selection and UAV path planning. It has
presented a DRL-based method to teach the UAV to seek
places with superior channel states and a game theory-based
access point selection algorithm to allow users to select the
correct access point autonomously based on the cost function.
It minimized the content delivery delay but battery life time
remained short. In [82], the authors investigated The The
cache-enabling UAV NOMA networks,, which UAV base
stations aid, and are designed for a mix of augmented reality
and traditional multimedia applications. DRL optimizes user
association, NOMA power allocation, UAV deployment, and
UAV caching placement altogether to reduce content delivery
time. It controlled continuous action space but with single
agent. In [83], it proposed a UAV-aided MEC framework,
as several UAVs. with varying trajectories fly over the target
region and assist the ground based user equipment. By opti-
mizing each UAV’s trajectory and offloading decision from
all the user equipment, a multi-agent DRL-based trajectory
control algorithm can jointly maximize the fairness among all
the user equipment and the fairness of user equipment-load
of each UAYV, as well as minimize the energy consumption
of all the user equipment. It managing the trajectory of each
UAV independently but it did not take cooperative decision.

92055



IEEE Access

A. O. Hashesh et al.: Al-Enabled UAV Communications: Challenges and Future Directions

TABLE 3. k-means and DL-based UAV solutions.

‘ Reference Scenario ML Scheme ‘ Objective Limitations
[69] UAV-assisted VLC Sum-Rate Maximization | HHO+ANN Maximize sum rate by the pro- | Fixed UAV
of all NOMA users posed algorithm/HHO trainer assumption
[70] Multi-UAVs networks Design UAV network k-means (SL) | Network’s sum-rate is improved Saving power

[71] UAV assisted VEC UAV-assisted VEC for | Al Reviews UAV with edge comput- | Limited review
6G IoV networks ing in 6G
[72] Drone-assisted remote Surgery System 6G Al- XGBoost | Integrate Al techniques to predict | Speed to get solu-
algorithm the type of disease and surgery tion

[73] New UAV aerial video dataset Video dataset modelling | DL Present a new UAV aerial video | Processing time
datase for semantic segmentation

[74] Light weight automatic modulation classifica- | Automatic modulation | CNN Light AMC method reduce model | Ideal assumption

tion classification sizes and accelerate computation

with the slight performance loss

In [84], the topic of reducing the normalized weighted sum of
Aol for a UAV-assisted wireless network in which a UAV col-
lects status update packets from energy-constrained ground
nodes was discussed by the authors. The problem was first
started as a mixed-integer program. It then suggested a convex
optimization-based technique for obtaining the UAV’s ideal
flight trajectory and time instants on updates for a given
scheduling strategy. It optimized the UAV’s flight trajectory
and minimized the normalized weighted sum of Aol but it
used single agent. In [85], the authors looked at how to
establish UAV-assisted MEC networks in a short amount
of time while simultaneously serving several users. It also
presented an end-to-end DRL model to learn and optimize
task offloading and UAV trajectory control. The proposed
approach optimizes many criteria, including computing delay
and energy consumption of the UAV-assisted MEC network,
by controlling the fraction of offloading jobs and UAV tra-
jectory. It optimized the offloading task ratio and minimized
the overall energy consumption in UAV but used single agent.
In [86], the authors investigated the usage of UAVs to assist
intelligent transportation system applications. It looked at the
topic of minimizing the predicted weighted sum Aol of cars
in a vehicular network by optimizing the trajectory of various
UAVs and scheduling policies. It minimized the expected
weighted sum Aol but did not consider power consumption.
In [87], the authors suggested a cloud-assisted joint charging
scheduling and energy management framework for UAVs,
and then used multi-agent DRL to design and implement
cooperative energy sharing across towers, resulting in intel-
ligent energy sharing. It can be seen that the two approaches
are linked and that they should be controlled, coordinated,
and harmonized by a centralized orchestration manager, with
fairness, energy efficiency, and cost effectiveness in mind.
In [88], the authors looked at multi-dimensional resource
management for vehicular networks using UAVs. The macro
eNodeB and UAYV, both mounted with MEC servers, work
together to make association choices and assign appropri-
ate resources to vehicles to enable on-demand resource
access effectively. It formulated the resource allocation at
the MEC servers as a distributive optimization problem to
maximize the number of offloaded tasks while satisfying their
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heterogeneous QoS requirements and then solved it with
a probabilistic multi-agent deep deterministic policy gradi-
ent (PMADDPG) based method because there is no central
controller. In [89], as a MEC framework with a renew-
able power supply, the researchers devised a UAV-assisted
compute offloading technique. The suggested model consid-
ers energy arrival instability, stochastic computing demands,
and a changing channel state. Due to the state’s complex-
ity, UAV-assisted computed offloading for MEC based on
DRL was proposed to reduce the overall cost, which is the
weighted sum of delay, energy consumption, and bandwidth
cost. In [90], the authors provided a space-air-ground inte-
grated network edge/cloud computing design for offloading
computation-intensive applications even considering remote
energy and computation restrictions, where flying UAVs pro-
vide near-user edge computing and satellites provide cloud
computing access. In [91], to determine the best solution for
energy-harvesting time scheduling in UAV-assisted device
To device (D2D) communications, the authors suggested a
unique model based on DRL. The UAV is considered to fly
around a central point to make the system model more realis-
tic. The D2D users move in a continuous random walk. The
channel state information encountered during each time slot
is randomly time-variant.In [92], the authors presented a UAV
system that uses wireless energy transfer to collect data from
various geographical regions and deliver it to its destination
modeled mobility, energy storage, and data storage patterns
to account for time-variant system states detected by the UAV
and their effects on decision-making. In [93], for the air-
ground coordinated communications system, the authors sug-
gested aerial to ground (A2G)-PMADDPG. By coordinating
both UAV-BSs and GUs, the proposed algorithm allows UAV-
BSs to offer equitable communication services for GUs on the
ground. Each GU maximizes its throughput by selecting
the appropriate UAV-BS to access, and each GU maximizes
the fair throughput by designing a trajectory. Simulation
results show that the approach outperforms existing bench-
marks regarding fairness index, total throughput, and mini-
mum throughput. A NOMA-based UAV-assisted network is
gaining traction as a viable solution for overcoming various
Like For 5G and B5G wireless networks, high spectrum
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TABLE 4. DRL-based UAV solutions.

Reference

Scenario

ML Scheme

Objective

Limitations

[77] UAV trajectory design

3D UAV trajectory de-
sign and band allocation

DRL

Automatic adjustment of UAV’s
Flight speed and direction plus
out performing the baseline meth-
ods.

Single UAV only

[78] Air-Ground Coordinated communications sys-

Trajectory design

Multi-Agent

Enable GUs to maximize their

all users not con-

tem DRL own throughput and UAV-BSs to | sidered
provide fair and high throughput
communication service
[79] UAV-Assisted cellular networks Design path planning | DRL Solve the UAV path planning sub- | Specific area
and access point problem in an area with unknown
selection channel states
[80] Re-configurable intelligent surface aided mil- | RIS elements and the | DRL Improve the sum secrecy rate of | processing time
limeter wave UAV communications UAV  trajectory  are system not considered
jointly designed
[81] UAV+NOMA networks Jointly optimize user as- | DRL Minimize the content delivery de- | Battery life time
sociation, power allo- lay. Mitigate the unobservable in-
cation of NOMA and terference from the decision
UAVs placement
[82] Multi-UAV-assisted IoT networks MEQC allocates resources | DRL Control continuous action space | Single agent

and large dimensional state space.
Minimize the computation costs

[83] UAV assisted MEC Trajectory optimize the | Multi-agent Managing the trajectory of each | Not cooperative
geographical fairness DRL UAV independently decision
[84] UAV-assisted networks Battery-constrains DRL Optimize the UAV’s flight trajec- | Single agent
trajectory tory and minimize the normalized
weighted sum of Aol
[85] UAV-assisted MEC MEC trajectory control DRL Optimize the offloading task ratio | Single agent
and UAV trajectory to minimize
the overall energy consumption in
UAV
[86] UAVs in intelligent transportation systems Jointly optimize the tra- | DRL Finding the trajectories of the | Power consump-

jectories of UAVs and
scheduling policies

deployed UAVs and scheduling
of status-updates to minimize ex-
pected weighted sum Aol

tion

[87] Cloud-assisted multi-UAV

Cloud-assisted joint
charging scheduling
energy management

Multi-agent

DRL

Present a new cooperative
energy management system in
edges/charging towers

Time to Charge

[88] UAV-assisted vehicular networks

Multi-access edge com-

Multi-agent

Pl‘OpOSC resource management

Energy computa-

puting Resource man- | DRL technique tion
agement
[89] UAV-assisted computation offloading MEC design an UAV- | DRL, K- | Design an UAV-assisted compu- | Path planning
assisted computation of- | means tation offloading scheme with re-
floading scheme newable power supply
[90] Space/Aerial-assisted computing offloading | A space-air-ground | DRL Integrate the historical network | Time factor
and IoT integrated network information to learn the system
edge/cloud computing dynamics. Adopt network virtu-
architecture considering alization to flexibly allocate the
remote  energy  and resources of the edge server
computation constraints
[91] UAV assisted D2D communications Optimal solution for | DRL Capability of solving real time al- | Battery life time
Energy Harvesting time location problems
scheduling
[92] mMTC and IoT UAV-assisted ~ wireless | DRL The proposed MDP assisted data | Limited Battery
energy and data transfer delivery and energy charging | capacity
scheme outperforms conventional
techniques.
[93] Intelligent trajectory design for UAV Trajectory MIMO-UAV DRL Maximizing the average system | Power consump-
secrecy rate of the system under | tion
some conditions
[94] Wireless-Powered UAV Networks Trajectory and energy of | DRL Maximizing the sum-energy re- | Ideal assumption
UAV ceived by all UAVs and optimiz-
ing the energy loading process
[95] Synchronizing UAV Teams Timely data collection | DRL Maximize the throughput of IoT | Ideal assumption
and energy transfer for devices, minimize the energy uti-
UAV lization of UAVs, and enhance the
energy transfer.
[96] Trajectory Optimization for Air-ground Coop- | Trajectory of UAV Federated- Reduce the communication over- | Battery life time
erative Emergency Networks DRL head with a distributed architec-

ture.
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efficiency and enormous connections are required, especially
when IoT devices are placed in a disaster region. It maxi-
mized the average system secrecy rate but did not calculate
power consumption. In [96], the authors proposed federated
multi-agent deep deterministic policy gradient (F-MADDPG)
based trajectory optimization algorithm to maximize the
average spectrum efficiency. Because of difficulty coordi-
nate between UAVs to improve the performance in terms
of Wireless Energy Transfer (WET) and Wireless Informa-
tion Transmission (WIT), authors of [95], proposed a Multi-
Agent Deep Reinforcement Learning (MADRL) method,
called TEAM to divide UAVs into two teams to behave
as data collectors and energy transmitters to maximize the
throughput of IoT devices, minimize the energy utilization of
UAVs, and enhance the energy transfer.In [94], the authors
leveraged MADRL method to optimize the task of energy
transfer between Flying Energy Sources (FESs) and UAVs
to maximize the sum-energy received by all UAVs, optimize
the energy loading process and compute the most energy-
efficient trajectories.

B. USL SOLUTIONS

In [97], small cell networks (SCNs) provide a cost-effective
coverage option for high-data-rate wireless applications.
However, with SCNs, appropriate management of backhaul
lines to small cell BSs is a difficult task (SCBSs). Therefore,
researchers use the notion of using UAVs to offer a connection
between SCBSs and the core network to construct a solid
backhaul link, where perfect line-of-sight (LoS) communica-
tion between the SCBSs and the core network plays a critical
role. We examine the relationship between SCBSs and UAVs
by considering a variety of communication-related aspects,
such as the data rate limit and backhaul bandwidth resources.
In [98], the authors planned predictive models with one-class
support vector machines (OC-SVM) and K-means cluster-
ing to detect eavesdropping attacks. They also propose a
framework for creating features of testing data from wireless
signals and another framework for generating training data to
prepare datasets for training predictive models.

C. RL SOLUTIONS

In Table 5, we focus on RL-based UAV solutions that solved
several problems in UAV applications. In [99], the authors
concentrated on a UAV-assisted wireless network where users
can be scheduled to receive the uplink transmission from
either an aerial or a terrestrial base station. The average long-
term transmit power required by the users was reduced by
dynamically optimizing user association and power alloca-
tion in each time slot. It enhanced power allocation and user
association using UAV. but with fixed resource allocation.
In [100], the authors considered the problem of content deliv-
ery to vehicles on road segments with either overloaded or
no available communication infrastructure, resorting to tools
such as proximal policy optimization, along with a set of
crafted algorithms to solve our problem. It delivered high-
bandwidth contents robustly but with short battery life time.
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In [101], the authors proposed Q-learning- based adaptive
geographic routing to improve the converging speed and
resource utilization of the geographic routing approaches in
vehicular ad hoc networks (VANET). Autonomous vehicles
(AVs) are deployed to guide the global transmission path
and a Q-learning algorithm is exploited to help each node
choose the best next hop in a specific area. In [102], the
researchers looked at using UAV-assisted edge caching to
help terrestrial vehicle networks transmit high bandwidth
content files. It created a combination caching and trajectory
optimization issue to judge content location, content distribu-
tion, and UAV trajectory to improve total network throughput.
Due to complex constraints, it chose the optimal path scheme
but did not consider saving power. In [104], The authors
suggested an online RL UAV-assisted wireless caching sys-
tem that optimizes the UAV trajectory, transmission power,
and caching content scheduling all at the same time. It used
the notion of request queues in wireless caching networks to
define the combined optimization of online UAV trajectory
and caching content delivery as an infinite-horizon ergodic
to produce a QoS-optimal solution. It achieved online opti-
mization of UAV trajectory but it did not calculate time con-
sumption. In [105], for delay-tolerant wireless sensor network
(WSN) applications, the authors suggested an autonomous
UAV-based data collection system. The goal is to use a self-
trained UAV as a flying mobile unit to gather data from
ground sensor nodes geographically spread over a particular
geographical area during a predetermined period. In [106],
a UAV-assisted computation offloading model was developed
by the authors, in which a group of UAVs flies about while
offering value-added edge computing services. Multi-agent
RL algorithms offered the target helper for the next task
execution and the proportion of bandwidth allotted to com-
munication, where two agents choose the target helper and
bandwidth allocation. In [107], the authors recommended that
several UAVs’ paths be designed based on users’ mobility
data forecast. Combining trajectory design and power control
challenge maximized the instantaneous total transmit rate
while meeting customers’ rate requirements. The authors
of [108] investigated cache-enabled UAV cellular networks
with NOMA support for colossal access. A mobile UAV BS,
which caches some popular contents for wireless backhaul
connection traffic unloading, assists in transmitting of a high
number of multimedia material for ground users. In [109],
the authors developed an onboard deep Q-network to reduce
total data packet loss of sensing devices in UAV scenar-
ios. In [110], the authors created an RL issue by modeling
the motion-trajectory as MDP and using the UAV as the
learning agent. It then proposed a pair of novel trajectory
optimization algorithms based on stochastic modeling and
reinforcement learning, which allowed the UAV to optimize
its flight trajectory without requiring system identification.
In [111], the authors used for cooperative search and res-
cue, UAVs and unmanned surface vehicles constitute a cog-
nitive mobile computer network, where RL is utilized to
design search paths and increase communication throughput.
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TABLE 5. RL-based UAV solutions.

‘ Reference Scenario ‘ ML Scheme ‘ Objective Limitations
[99] UAV assisted Communications minimization of the | Relative Enhance power allocation and | Fixed resource al-
users’ long-term average | Value user association using UAV. location
consumed transmitted | Iteration
power (RVI)
algorithm
[100] UAV aerial-assisted vehicular networks Trajectory selection RL Deliver high-bandwidth contents | Battery life time

robustly

[101] UAV-assisted geographic routing

Vehicular ad hoc net-
work

Adaptive-QL

Propose adaptive UAV routing
technique

Network type

Sensor networks

an obstacle-constrained environ-
ment. Maintain the UAV safety
from crashes due to energy deple-
tion

[102] UAV-assisted Data Sensing Trajectory design RL Optimal path scheme due to com- | Saving power
plex constraints
[103] UAVs-Enabled wireless networks Like survey FDL Highlight applications of FDL in | Limited review
UAVs
[104] UAV wireless networks with content and | Trajectory planning Online RL Online optimization of UAV tra- | Time
energy recharging jectory and radio resource with | consumption
energy and content recharging
with reduced-Complexity opti-
mality conditions
[105] UAV-assisted data Collection for Wireless | Trajectory design RL and QL Enable autonomous navigation in | Energy computa-

tion

[106] UAVs-assisted edge computing

Design computation of-
floading

Multi-Agent
RL

Contrive the computation offload-
ing problem to learn the near-
optimal offloading policy by inter-
actions with the environment

Battery life time

[107] Multi-UAV assisted wireless networks

Trajectory design power
control

Multi-agent
QL

Formulate on throughput maxi-
mization problem by designing
the trajectory and power control
of multiple UAVs

Time
computation

to improve communica-
tion throughput

[108] UAV NOMA networks NOMA resource alloca- | QL Propose a framework of cache- | Power consump-
tion enabling UAV NOMA cellular | tion
networks for content delivery of
ground users in a hotspot area
[109] UAV-assisted online power transfer Microwave power trans- | QL Minimize the overall data packet | Processing time
fer minimize the overall loss of the sensing devices
data packet loss data al-
location device charging
[110] Adaptive UAV-trajectory optimization Maximizing the | RL Maximize the cumulative data | Energy
cumulative collected volume of the UAV collected from | calculations
data  Modelling  the the sensors
motion-trajectory
[111] Group mobile computing for UAVs and USVs | UAVs as cognitive mo- | Multi-agent UAVs and USVs are jointed and | Base station
bile computing network | RL model the path planning problem power

gency communication

efficient maximization

multi-UAV
networks

enabled NOMA

[1] Multiple-UAV networks deployment and move- | Maximizing the sum | Q-learning Solve the problem of maximizing | Power consump-
ment design mean opinion score of the sum the mean opinion score of | tion
the users the users
[112] Mobile UAV base stations Beam selection RL Modeling of the beam selection of | Processing time
millimeter Wave base stations
[113] NOMA-Based UAV-aided networks for emer- | Disaster NOMA energy | DQL Throughput maximization for | Fixed UAV

The authors of [1] proposed the challenge of joint non-
convex 3D deployment and dynamic movement of UAVs to
maximize ground users’ total mean opinion score in quality
of experience-driven deployment and dynamic movement of
numerous UAVs. In [112], the 3D UAV aided mmWAve
model was investigated to simulate beam selection and envi-
ronmental responsiveness and regularly get near optimal
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evaluations by learning from current circumstances. In [113],
the authors developed a NOMA-based UAV-assisted net-
works emergency communications architecture, in which
catastrophe situations are split into three major categories:
emergency areas, large regions, and dense areas. In disaster
regions, a UAV outfitted with an antenna array might offer
wireless coverage to several densely scattered devices.
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D. MAB-BASED SOLUTIONS

Herein, we focus on the UAV MAB-based solution, as shown
in Table 6. In [114], the authors looked at how a rotary-wing
UAV can function as a wireless base station for emergency
communication in a post-disaster environment with an uncer-
tain user distribution. The goal of the described optimization
challenge is to determine the ideal path that starts and ends
at the same spot to serve as many people as feasible with
limited battery capacity. This issue was reformulated using
two extended MAB-enabled path planning algorithms. UAVs
have been used as a critical alternative for ground communi-
cations in catastrophe zones such as earthquakes and exposed
forests because of their benefits. In [115], the authors looked
at radio resource allocation for a post-disaster surveillance
system built with a cognitive radio network (CRN). They
solved it with a dynamic spectrum access system and MAB.
It maximized the total system rate but with ideal setting
assumption. In [58], the difficulty of choosing a gateway UAV
is solved. The major goal is to maximize the UAV relays’
long-term average data rates while lowering the flight’s bat-
tery cost, utilizing mmWave backhauling, which uses the
30 300 GHz band and antenna beamforming. In [116], the
authors offered the MAB solution to improve the perfor-
mance of any mobile networked device. Their results also
showed that the 3D method optimizes technical resources
compared to current single and 2-Dimensional algorithms,
resulting in near to ideal performance throughout the average
duration through machine learning of actual UAV commu-
nication settings. In [117], the authors used power control in
combination with channel selection to examine anti-jamming
vehicle to vehicle (V2V) communication in connected and
autonomous vehicle (CAV) networks. The overall framework
of cognitive risk control (CRC) is well tailored to assess and
address the jamming problem by bringing a brain-inspired
research instrument, cognitive dynamic system (CDS). Power
control is specifically carried out via RL, with the results
being assessed by a task-switch control module. The MAB
issue is constructed based on the risk assessment when per-
forming the channel-selection procedure. Still, their studied
structure is simplified and needs to be more practical.

In [118], the plan target could be a secondary user (SU)
network that has got to maximize the overall framework
rate by selecting on ideal transmitting power value on each
channel, and at the same moment, don’t lead to any harmful
interference to the receivers of the PU organize as investigates
the radio resource allocation for a post- disaster surveillance
system which is constructed using CRN through dynamic
spectrum access (DSA) system using MAB.

E. FL-BASED SOLUTIONS

In [119], a multi-UAV system has been designed to study
picture categorization in area exploration scenarios. FL has
been used to complete image classification tasks, and local
updates from all UAVs are broadcast to the ground fusion cen-
ter (GFC) over fading wireless channels, based on the local
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model learned from pictures captured by an onboard camera
at each UAV suggested FL-aided classification. As shown
in Figure 2, FL is the least technique that is used in UAV
problems, although it is a promising technique.

FL

DLR Q-learning

MAB

FIGURE 2. ML percentage usage in UAVs.

V. CHALLENGES AND FUTURE WORK

Al utilization for UAV systems has driven to present numer-
ous development and savvy arrangements for an endless run
of problems as shown in Figure 3. This section briefly surveys
the major vital open subjects specified already for UAV issues
summarized in Figure 4. From our study, it is clear that more
than 40% of researchers used DRL because of its common
policy and there are a lot of data to be utilized, but we believe
that meta and federated learning will give better accurate and
faster results if researchers develop it as it is a hot area to
go through and find more methods to solve several problems.
Drones are used to obtain confidential data, such as weather
forecasting, storm tracking, and precision agriculture. They
can even be used for surveillance purposes, especially in
search and rescue. Future promising related research issues
are as follow:-

o UAV mounted RIS: Recently, UAV-mounted RIS is
under investigation to further improve wireless cover-
age and accuracy position. It is a promising research
direction to leverage different Al techniques, especially
online learning to enhance different related problems
such as joint optimization and path planning [127].

e Multi UAV path planning: Most current UAV path
planning handles a single UAV scenario with a static
environment. Still, multi UAV trajectory planning within
a dynamic environment via online learning is a vital
future direction. For example, how to avoid obstacles,
timing to select the best path, and prevent trajectory
interference using Al optimization schemes.

o UAYV for V2X: Although previous work utilized UAVs
to make smart traffic control, the techniques used are
DL-based, which consumes offline training time. It is
promising to leverage self-learning or meta learning
schemes proper for such difficulty.

« Meta learning aided UAVs: Since the number of users
served by UAVs is increasing rapidly, we need to accel-
erate the learning process (i.e., reducing learning time)
using advanced ML such as meta learning. This can
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TABLE 6. MAB based UAV solutions.

‘ Reference Scenario Motivation ML Scheme | Main Contribution Limitations
[114] UAV-assisted emergency communications BS in disaster Optimal | e-greedy, Provide emergency communica- | Limited battery
path starting and ending and UCB | tion service for a post-disaster | capacity
algorithms area with unknown user distribu-
tion
[58] mmWave UAV wireless networks Gateway selection max- | UCB, and TS | Maximize the achievable data | Data loss
imize average data rate | algorithms rates of the access-gateway
and minimizing battery
cost
[115] Disaster surveillance system Resource management | UCB Secondary user network has to | Ideal setting
(RM) algorithm maximize the total system rate
by selecting a proper transmitting
power value on each channel, and
on the same time, do not cause
any harmful interference to the re-
ceivers of the PU network
[116] 5G Beam selection for UAV applications 3D Beam selection TS, e-greedy, | Suitable beam selection technique | Non energy aware
and Bayesian
algorithms
[117] V2V communications V2V channel selection | UCB Coordinate the operations of | Simple network;
in autonomous vehicle | algorithm power control and channel | inaccurate
networks selection while maintaining a | distance
desirable throughput estimation
Reinforcement Learning MAB Supervised Learning
1] UAV+D2D p—
[91] U [117] V2V [14] UAV+NOMA

[77] UAV Trajectory
[99] UAV+wireless network
[92] UAV+IoT
[93] Trajectory MIMO-UAV
[78] UAV+Trajectory
[79] UAV Design
[80] RIS Trajectory
[102] UAV Trajectory
[100] UAV TrajectoryloV
[105] UAV Trajectory
[106] Design UAV
[81] UAV+aNOMA
[82] UAVIOT+Allocat resources
[83] Mobile edge computing
[84] UAV Trajectory
[85] Mobile edge computing
[124] UAV+NOMA
[114] UAV Beam selection
[73] Improve UAV throughput
[110] Modeling UAV trajectory
[89] Mobile edge computing
[125] UAV placement &
resource allocation
[90] Multi-access edge computing
[87] Cloud assisted joint charging
SchedulingEnergy management
[86] UAV Trajectory

[58] UAV Gateway Selection
[114] UAV + Disaster
[115] UAV + Disaster

[116] UAV Beam

AI-UAV Assisted Solutions

Federated Learning
[118] UAV+IoT

Online Learning
[126] Maximize the
capacity UAV network
[104] UAV Trajectory

[103] Survey
[119] UAV+Image
Classification
[125] UAV placement &
resource allocation

[26] UAV Trajectory
[80] IRS with MIMO CH
[123] UAV Trajectory
[72] UAV in 6G
[70] UAV Design
[28] UAV Energy constrains
[32] Mobile edge computing
[90] Access to the cloud computing
[110] Multiple UAVs
[74] Maximizing the sum mean
[89] Mobile edge
computingDesign UAV
[123] UAV Optimize
the energy efficiency
[30] Mobile edge computing

Unsupervised Learning
[71] V2X, 6G, IoV
[101] Vehicular ad hoc network
[107] UAV Trajectory
[73] Video+dataset
[74] Maximizing the sum mean
[120] Optimal path
[113] UAV+Disaster NOMA
[121] Beamforming & Beam-
steering CH optimization+UAV
[109] Microwave Power Transfer
[122] UAV+Disaster &
Resource allocation “CH”

FIGURE 3. Al-assisted UAV applications.

enhance/accelerate node search methods, collaborative
UAVs, and Cognitive Radio aided UAVs, and multipath
planning.

o UAV aided Wireless Power Transfer: Recently, UAVs
can be used to provide WPT to mobile devices that lacks
energy. Hence, in that case online load balancing should
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be implemented to distribute the energy fairly between
the users. Such a topic is a promising future direction
too, especially when optimizing the path of UAV to serve
more users.

« MEC aided UAVs: Lately, both MEC and UAV are com-
bined to simultaneously extend and facilitate UAV usage
in different fields. Moreover, advanced Al techniques
can enhance such a framework, especially FL ones at
multi UAV dynamic scenarios with effective resource
management.

o Security/Privacy: Designing the position of a UAV
takes into account the existence of several eavesdroppers
to enhance the secrecy performance. Enhancing and
upgrading the current designs of cognitive anti-jamming
V2V communications, and improving the inter-system
relationship between radar tracking and vehicular com-
munication. Advanced Al schemes should strengthen
data security and user privacy against eavesdroppers.

o Energy consumption: Current related research aims
to perform multi objective optimization to prolong the
UAV battery lifetime to serve more users and maximize
the sum rate. Hence, energy consumption is a open Al
related issue that needs more investigation, especially
for multi UAv scenarios.

o UAV aided network caching: Caching and computing
can be incorporated into UAV-based integrated system
to provide uRLLC in the emergencies. This can be done
via up to date ML techniques proper to each specific
scenario.

Ultimately, we suggest using online learning instead of
offline learning in all previous research topics as it will be
more efficient and with high response and accurate decisions
on urgent issues.

VI. CONCLUSION

In this survey, we deeply investigated new ML-based research
direction to improve the performance of UAV networks ben-
eficial to a large variety of potential applications such as
smart cities and airborne BS deployment, etc. Beforehand,
we highlighted different ML types such as SL, USL, RL,
FL, etc. Then, we surveyed distinct ML-aided UAV solutions

92062

according to the utilized ML category. Finally, we focused
on MAB-assisted solutions as a promising direction due to
various MAB types, proper to different scenarios. We offered
a series of concluding observations for each of the strategies
we looked at, outlining the existing limits and concerns as
well as a set of interesting open problems. Finally, we sum-
marized future directions and provided attractive UAV-related
research topics that need more investigation, especially
Al-aided ones.
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