
Network Topology Identification for Cloud Instances

Abdallah Saad Ahmed El-Mahdy

Computer Science and Engineering Department Computer Science and Engineering Department

Egypt-Japan University of Science and Technology (E-JUST) Egypt-Japan University of Science and Technology (E-JUST),

and on leave from Alexandria University

Alexandria, Egypt Alexandria, Egypt

abdallah.saad@ejust.edu.eg ahmed.elmahdy@ejust.edu.eg

Abstract— High performance computing (HPC) on the cloud

is an emerging approach that can potentially provide a

significantly cheaper alternative to supercomputers. However,

clouds are largely oriented towards multiprogramming

workloads with no significant intercommunications. The

placement of tightly coupled HPC virtual machines is thus not

guaranteed to be physically affine, resulting in unpredictable

communication times. This paper proposes a new cloud

analytical model that describes the physical placement of virtual

machines in the communication hierarchy. The model is

constructed through a set of automated experiments that

measure virtual machines point-to-point communication speed

parameters; the parameters are then clustered, and the topology

of the cloud network seen by the virtual machines is identified.

As a case study, the paper applies the model to the Amazon

Cloud; the obtained hierarchical model is used to select a fast

communicating subset of instances and discarding the other

instances. For a message-passing all-to-all communication

operation such selection resulted in 4.1 to 5.5 speedup

enhancement in performance when randomly executing on a

similarly sized subset.

I. INTRODUCTION

Cloud computing providers exploit economy of scale and
consolidation of resources [1] to significantly cut down
administration and computation costs resulting on cheap
computation. Cloud computing has a potential to provide for a
cheaper alternative to high performance computation systems.
However, a major hurdle is the intercommunication variability
among communicating nodes or instances [2].

A cloud system interconnect is typically organized as a
collection of hierarchically interconnected computing nodes
[3]; a typical system communication hierarchy starts by
multicore processors sharing the same computing node; then
computing nodes sharing the same switch forming a rack; and
lastly, a group of racks sharing a core switch. A group of
communicating virtual machine (VMs) is not guaranteed to
reside on the computing node due to allocation fragmentation;
thereby the intercommunication varies with every group
creation.

Cloud computing relies on virtualization to abstract the
underlying physical computing resources, allowing for lower
cost of management and better sharing of the resources.
However, virtualization hides the mapping between the

instance and the underlying physical machines; thus the nodes
are not aware of their physical placement.

In this paper, we propose a new method to identify the
physical placement of VMs on the cloud for an arbitrary group
of VMs. The method computes point-to-point communication
speeds among the VMs. The obtained values are then
clustered so that VMs in the same cluster share similar
communication speeds among all cluster members. This
potentially allows for achieving more efficient and predictable
execution of intensively communicating HPC application on
the cloud.

The main contributions of this paper are:

 Modeling and obtaining the parameters of the point-
to-point communication latencies among VMs.

 Identifying a suitable clustering method that identifies
the underlying physical interconnection layout on the
cloud.

 A case study of all-to-all broadcast group
communication operation optimization on the Amazon
Web Services (AWS) cloud.

Initial results on the application of our method on the all-
to-all group communication operation achieve 4.1 to 5.5
speedup enhancement in performance, compared to executing
the same benchmarks on randomly chosen groups of VMs. In
particular, we choose a smaller group of VMs that have fast
inter-communication speeds and discards the other VMS. We
thereby select the best VMs for the given problem.

The rest of this paper is organized as follows: Section II
presents a detailed description of the proposed method.
Section III presents the experiments, results and analysis of
our method. Section IV gives a quick overview of the related
work. And, finally Section V concludes the paper.

II. VM TOPOLOGY IDENTIFICATION METHOD

The main objective of the method is to generate a
communication tree that approximates the underlying
communication structure among the VMs. The VMs are the
leaves of the tree, and the internal nodes represent a network
switch.

We model the point-to-point communication between
nodes by the following simplified formula [4]:

Tcomm = Ts + m Tw (1)

Where Tcomm is total time to transfer a message of m units
between two particular nodes. Ts is the setup time to start the
communication operation between the participating nodes.
This time is required once per a single message transfer
operation. Tw is the time to transfer a unit message between
the two nodes.

We chose such simplified model as it abstracts many of the
details that would be difficult to obtain their parameters from
the cloud (such as number of hops, etc).

We measure the Tcomm via a sequence of blocking ping-
pong message transfer operations similar to the osu_latency
benchmark [15]. We choose to measure latency as it is a more
accurate measure of physical node distance than bandwidth.

One particular issue in measuring Tcomm is that the CPU
sharing in the cloud can result in any of the communicating
parties to be preempted. This would increase the perceived
communication time. To help negate that effect, we repeat the
point-to-point transfer operation many times and select the
minimum communication time. The rational here is that the
minimum is likely to capture the situation where both nodes
are no preempted.

The Tw parameter characterizes the propagation delay
among nodes; we therefore choose it to characterize
communication switches; in other words, nodes with similar
Tw are clustered together.

In the following subsections we describe in detail our
method steps depicted in Fig. 1.

A. VMs Generator

This is the stage where the instances are automatically
hired from the service provider with the given specifications
and user credentials as inputs. The specifications of the
instances are the number of required instances, instances type,
security group of the instances and the image that those
instances are created from. The output of this stage is the
required instances and their private IPs.

B. Hardware Probes

At this stage all the measurements are done. Each instance
probes its neighbors using point-to-point communications with
different message sizes. The probe operations of all the
instances are made in parallel. The private IPs of the instances
are used to automatically create the MPI run command which
is used to execute all the measurements. The measurements
are repeated n times (where n is a user input).

Those measurements are communication time matrix,
measuring the communication time between every pair of
instances for different communicated message sizes; the
metrics measured are average communication time, min/max,
standard deviation, and coefficient of variation of the
communication times.

The minimum communication time matrix is three-
dimensional. The minimum communication time is measured
for different message sizes from a range that starts from 1 byte

to a given maximum size with a given step size. For example:
the range starts from 1 byte to maximum of 500 KB with a
step size of 10 KB; this gives a range of 50+1 different sizes
{1, 10000, 20000, … , 500000}.

C. Curve Fitting

The given minimum communication time matrix from
stage #2 are plotted versus the message sizes for each pair of
nodes. This stage fits the output curves using the following
simplified formula (1) presented earlier.

The fitting results in extracting two features Ts -
emphasizing the latency- and Tw -indicating the minimum
communication time for each pair of nodes. The output of this
stage is two 2D matrices one for the setup time, Ts, between
each pair of instances in microseconds, and the second matrix
is Tw between each pair of instances also in microseconds.
Both of the matrices are square symmetric matrices of size (np
x np) with zero trace, where np is the number of instances
hired.

D. Topology Identifier

Here the instances are grouped and clustered based on the
differences of Tw among them. The applied clustering
technique is the average linkage clustering [5]. This clustering
technique initially considers each instance as a single cluster
and then based on a given threshold, the clusters can be
merged if and only if the average of differences between each
instance in each cluster and the other cluster instances is less
than or equal to the given threshold.

The output of this stage is a hierarchical cluster in the
shape of a dendrogram. This diagram represents the
communication costs between the hired instances in
microseconds. Moreover, the diagram identifies the network
topology between the physical machines hosting the hired
instances. This gives a clue to the closest instances in groups
with minimal communication costs. This information benefits
HPC applications to minimize their execution time and
performance.

VMs Generator

V
M

s
 S

p
e
c
s

A
W

S
 C

re
d
e
n
tia

ls

VMs Instances

Instances IPs

Hardware Probes

M
in

 C
o
m

m
. T

im
e
 M

a
trix

 A
v
g
 C

o
m

m
. T

im
e
 M

a
trix

M
a
x
 C

o
m

m
. T

im
e
 M

a
trix

S
T

D
 M

a
trix

C
o
m

m
. S

p
e
e
d
 M

a
trix

Curve Fitting
Topology Identifier

T
s

 T
wHierarchical Cluster

Fig. 1. The proposed methodology for identifying VMs network topology

III. EXPERIMENTS AND RESULTS

Following the methodology described above, the
experiment begins with automatically creating np instances,
with a given specification on Amazon EC2. Then using the
resulting instances' IPs to create an MPI run command to the
program that probes the instances that are hosted on physical
machines with only one process per instance. The program
results in number of matrices mentioned previously. The
curve-fitting program starts fitting the communication time
matrix with equation (1). The curve fitting phase produces Ts
and Tw matrices.

As a proof of concept before testing the proposed method
on the cloud, an experiment was applied in a local machine to
verify the used model. Then the difference between the real
measurements (Tcomm vs. M) and the line resulted from the
curve fitting stage, is measured. The local Machine
specificationsare listed in Table 1, below.

TABLE I. LOCAL MACHINE SPECS

Item Description

Processor Intel® Core™ i7-2670QM CPU @ 2.20GHz × 8

Memory 8 GB

Caches 6 MB

Architecture 64-bit

O/S Ubuntu TM 12.04 precise LTS

Fig 2 shows the results.

Fig. 2. Communication time between two cores on local machine versus

different workloads

The linear-fitting results in the following equation:

 Tcomm = 0.011 M + 20.19 (2)

With coefficient of determination (R²) = 0.999.

Fig.2 shows that the fitted line is clearly close to the real
measurements. This result encourages us to proceed in the
experiments.

The next step is to verify the model on the cloud and
analyses the measurements. So, on AWS we begin with only
two instances with specifications listed in Table 2.

The purpose of this experiment is to model the
communication time between two virtualized instances on the
cloud to check the validity of the proposed model on a virtual
environment. The communication process works as follows:
Communicate different message sizes that ranges from zero
byte to max size of 128 KB per message by doubling the
message size every step. The measurements are taken 10 times
for each message size; each time the sender sends the message
100 times, and the average communication time of those
communication operations is calculated. Fig. 3 shows the
output of this experiment with regular fitting.

TABLE II. VIRTUAL MACHINE SPECS

Item Description

Type M1. large

Processor 2 cores each with 2 EC2 compute units

Memory 7.5 GB

I/O

Performance
500 Mbps

Architecture 64-bit

O/S Ubuntu TM 12.04 precise LTS

Fig. 3. Communication time between two virtual instances on the cloud

Equation 3 is the resulted fitting-line equationwith R
2
 =

0.918.

 Tcomm = 2.261 M+ 23590 (3)

These results on the cloud areless accurate than the
measurements on the local machine due to the virtualization
environment and the variation of the workloads on the

physical machines hosting the VMs on the cloud. However
these results are acceptable.

After proofing the concept that our model can represent the
communication between virtualized instances on the cloud, we
start some experiments that pass through the whole proposed
method's stages.

The experiments were done over 16 virtualized instances
with specifications listed in Table 2. The "VMs generator"
module automatically hired the required instances, and then
the "Hardware prober" probes the physical machines hosting
the virtualized instances and outputs the communication
matrix to the "Curve fitting" stage.This stage automatically fits
the communication time between each pair of instances and
passes the Tw matrix to the "Topology identifier" stage. This
stage applies the average linkage clustering on the given
matrix and results in the hierarchal cluster in Fig. 4 based on
Tw and in Fig. 5 based on Ts. We consider that the cluster
based on Tw represents the real topology of the hired VMs
because Ts is the absolute term for the communication
equationthat is affected by the state of the communicating
machines more than the communication channel or distance.

As a proof of accuracy of our proposed topology, we use a
message passing all-to-all broadcasting communication
operation that is executed on different groups of VMs. Each
group consists of 8 VMs. These groups are as follows: a group
of the closest machines according to the proposed topology
based on Tw, a group of the closest machines according to the
proposed topology based on Ts, a group of the farthest VMs
according to the proposed topology based on Tw, a group of
random nodes with predefined numbers (from 0 to 7) and
another group of random VMs (from 8 to 15). Then we
compare the execution times of the all-to-all benchmark with
different message sizes {0, 100, 512, 1K, 10K, 50K}Bytes.
This comparison is presented in Table 3 and Fig. 6.

Fig. 4.Tw based Hierarchal cluster represents the communication distances

between the virtual instances. The vertices represent the instances and the

weighted links are the communication distance between them in

microseconds.

Fig. 5. Ts based Hierarchal cluster represents the communication distances

between the virtual instances. The vertices represent the instances and the

weighted links are the communication distance between them in milliseconds.

TABLE III. EXECUTION TIMES IN MICROSECONDS OF THE BENCHMARK

ON DIFFERENT GROUPS OF INSTANCES WITH DIFFERENT WORKLOADS

Message

Size

(Byte)

Group

name

0 100 512 1K 10 K 50 K

Tw Based

Closest

VMs
638 1258 1353 1313 1889 7349

Tw Based

Furthest

VMs
12175 24570 23804 25305 31783 97485

Ts Based

Closest

VMs

3563 7416 7394 7933 11906 39393

Random

Group 1

(0:7)
3510 6335 6607 6428 9283 32393

Random

Group 2

(8:15)

2813 5980 5665 6098 8304 30140

The enhancement in the execution time of the benchmark

is obvious in Table 3. The closest VMs group according to Tw
clustering is better than the other groups by speedups listed in
table 4.

The enhancement varies in the range between 4.1 and5.5
speedup for the random chosen instances, where the
enhancements are much bigger comparing to the farthest
chosen group where the enhancement speedup varies from
13.3 speedupto19.5 speedup according to the applied
workload on the benchmark.The execution time of the

benchmark in the previous experiment isaveraged from 1000
times of execution for every message size.

TABLE IV. ENHANCEMENT IN PERFORMANCE IN SPEEDUP FOR THE

RANDOM AND WORST GROUPS COMPARING TO THE CLOSEST GROUP BASED

ON BOTH TW AND TS WITH DIFFERENT WORKLOADS

Message Size

(Byte)

Group name

0 100 512 1K 10 K 50 K

Tw Based Closest

Vs. Farthest
19.1 19.5 17.6 19.3 16.8 13.3

Ts Based Closest

Vs. Farthest
3.4 3.3 3.2 3.2 2.7 2.5

Tw Based Closest

Vs. Random1
5.5 5.0 4.9 4.9 4.9 4.4

Ts Based Closest

Vs. Random1
0.99 0.85 0.89 0.81 0.78 0.82

Tw Based Closest

Vs. Random2
4.4 4.8 4.2 4.6 4.4 4.1

Ts Based Closest

Vs. Random2
0.79 0.81 0.77 0.77 0.70 0.77

From the previous results, it is apparent that our model

represents the communication time on the virtualized
environment on the cloud, and identifies the topology of the
used instances accurately, as the execution time of the all-to-
all broadcast group communication varies according to the
distances between instances in our hierarchical cluster. Also,
as we assumed Ts cannot represents the cloud's internal
topology as it is the absolute term in the assumed
communication model that is affected by many factors that is
not related to the nature of communication itself.

Fig. 6. The difference between execution times for various groups of

instances.

IV. RELATED WORK

There have been many attempts in the literature to address
HPC on the cloud. The closest approach to this work is the
network tomography inference approach. In this approach two
main probing mechanisms are usually utilized; the first is
round-trip probe (as in our work), and the second is sandwich

probing [17]. The latter relies on a sending node transmitting
two packets to a destination node separated by a larger packet
addressed to an alternate node; the delay perceived by the first
destination is correlated with similarity of the two destination
nodes. Such information is then used to construct a
hierarchical network topology structure.

Battré et al.[16]investigate the use of this approach on a
mid-sized experimental cloud setup. They confirmed that the
round-trip time probingis more accurate than sandwich
probing in the virtualized environment, mainly due to large
timing variation introduced by the virtual machine monitors.
However, the straightforward application of round-trip
probing still suffered significant inaccuracies. Our work
proposes an enhanced round-trip probing method, by
integrating a simple two-parameter communication model,
experimentations, curve fitting, and a generalized cluster
hierarchy trees (instead of binary trees). The method runs in
parallel, requiring linear-time complexity, rather than the
typical underlying quadratic complexity of round-trip probing.

In a second approach the service provider offers high
speed interconnected computing clusters, such as Amazon
Cluster Computer (CC) machines [7] and Penguin Computing
HPC service [8]. The former is investigated by Expósito et al.
[9]; they confirmed the cost-efficiency of the Amazon EC2
CC1 and CC2 instance types with respect to computation,
point-to-point communication and scalability performance.
However, the trade-off here is the much higher service price
than standard instances. In our approach we potentially
overcome this trade-off by placing the tasks on much closer
VMs with the same amount of renting cost (aside from an
initial experimental cost including a short-term use of distant
VMs, that are terminated afterwards)..

In another approach, the authors considered standard, non-
cluster instances. Ostermann et al. [10] have evaluated and
analyzed the performance of the Amazon EC2 cloud services
for scientific, distributed computing. They found that the
current performance is not sufficient to execute a scientific
application on the cloud. However, they mainly analyzed the
effect of virtualization. Jackson et al. [2] also evaluated the
cloud while running HPC applications and showed that the
more the HPC communicate the more the performance
becomes worse, emphasizing the importance of the network.
Our work thus complements these studies by considering the
communication aspect on the cloud.

A number of researches have worked in improving the
performance of executing the applications that demands
clusters of VMs during its execution. Their work was on how
to conduct a reliable service available and satisfying the user
demanded resources to meet the Service Level Agreement
minimizing the communication cost. One of the solutions by
Jayasinghe et al. [11] is to model both the data center and the
application and input them as a graph of virtual machines and
a graph of data center to a placement engine which use the
divide and conquer strategy to solve the problem as an
optimization problem. Then the mapping of the VMs on data
center's physical machines is solvable as a graph-coloring
problem. Another work in the same approach is proposed by
Tantawi[12]; it is a statistical method to bias the selection of

the samples while performing cross entropy. This resulted in
making the cross entropy scalable and linear with the size of
the cloud. This approach of enhancement is a server side one,
which is contrary to our model that enhance the performance
of the cluster based applications with blind view of the real
cloud structure and capacityHu et al.[18] present a lightweight
system-level method to discover VMs ensembles and their
interactions. The information helps provide better VM
management, such as by placing communicating VMs in close
by physical machines.This work is server side, while our
approach is form the client side.

Another approach is to simplify the process of hiring and
deploying VMs in cluster structures. An example is a
distributed middle-ware called Cyber aide Creative Service
[13], which can create distributed VMs on demand as an
interface to the cloud web services to create and manipulate
the what called cyber infrastructure as a service (CaaS).
Another example is Aneka [14], which is an enterprise cloud
computing platform and solution to develop on demand scale
applications. Vecchiola et al. [15] demonstrate two examples
on performing two scientific applications on the cloud using
Aneka.This approach facilitates the deployment and running
of VMs on cluster structures.Our work can be integrated with
one of those systems in this approach, as a future work.

V. CONCLUSIONS AND FUTURE WORK

This paper considers the problem of identifying the virtual
machine placement within the cloud provider network. The
method does not assume any information provided by the
cloud provider, thereby allowing for being largely cloud
provider independent.

The method has revealed a large variation of performance
for the all-to-all group communication operation, with a ratio
of 19.8. Such result confirms the significance of the VM
placement problem in the cloud. Moreover, our method
resulted in a consistent improvement in the overall
performance, ranging from 4.1 to 5.5 speedups.

The main objective of this paper is to assess the possibility

of identifying the placement details, and the corresponding
achievable benefits. Future work is needed to conduct more
elaborate experiments using a large set of benchmarks, as well
as further tuning of our model; another interesting area is to
extend the model to assess the virtualization load on the
computing node, thereby allowing for further tuning/mapping
of the parallel tasks to the VMs.

ACKNOWLEDGEMENT
This research is partially supported by a PhD scholarship

from the Egyptian Ministry of Higher Education (MoHE), and
an Amazon AWS Research Grant.

REFERENCES
[1] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art

and research challenges,” J. Internet Serv. Appl., vol. 1, no. 1, pp. 7–18,
Apr. 2010.

[2] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J.
Shalf, H. J. Wasserman, and N. J. Wright, “Performance Analysis of
High Performance Computing Applications on the Amazon Web
Services Cloud,” in 2010 IEEE Second International Conference on
Cloud Computing Technology and Science (CloudCom), 2010, pp. 159–
168.

[3] L. A. Barroso and U. Hölzle, “The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines,” Synth. Lect.
Comput. Arch., vol. 4, no. 1, pp. 1–108, Jan. 2009.

[4] A. Grama, G. Karypis, V. Kumar, and A. Gupta, Introduction to Parallel
Computing, 2nd ed. Addison-Wesley, 2003.

[5] G. Gan, Data Clustering in C++: An Object-Oriented Approach,
Har/Cdr. Chapman and Hall/CRC, 2011.

[6] “Amazon Web Services, Cloud Computing: Compute, Storage,
Database.” [Online]. Available: http://aws.amazon.com/. [Accessed: 17-
May-2013].

[7] “HPC Cloud Services | Penguin Computing.” [Online]. Available:
http://www.penguincomputing.com/services/hpc-cloud. [Accessed: 17-
May-2013].

[8] R. R. Expósito, G. L. Taboada, S. Ramos, J. Touriño, and R. Doallo,
“Performance analysis of HPC applications in the cloud,” Future Gener.
Comput. Syst., vol. 29, no. 1, pp. 218–229, Jan. 2013.

[9] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D.
Epema, “A Performance Analysis of EC2 Cloud Computing Services for
Scientific Computing,” in in Cloud Computing, D. R. Avresky, M. Diaz,
A. Bode, B. Ciciani, and E. Dekel, Eds. Springer Berlin Heidelberg,
2010, pp. 115–131.

[10] D. Jayasinghe, C. Pu, T. Eilam, M. Steinder, I. Whally, and E. Snible,
“Improving Performance and Availability of Services Hosted on IaaS
Clouds with Structural Constraint-Aware Virtual Machine Placement,”
in 2011 IEEE International Conference on Services Computing (SCC),
2011, pp. 72–79.

[11] A. N. Tantawi, “A Scalable Algorithm for Placement of Virtual Clusters
in Large Data Centers,” in Proceedings of the 2012 IEEE 20th
International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems, Washington, DC, USA,
2012, pp. 3–10.

[12] L. Wang, D. Chen, Y. Hu, Y. Ma, and J. Wang, “Towards enabling
Cyberinfrastructure as a Service in Clouds,” Comput. Electr. Eng., vol.
39, no. 1, pp. 3–14, Jan. 2013.

[13] C. Vecchiola, X. Chu, and R. Buyya, “Aneka: A Software Platform for
.NET-based Cloud Computing,” arXiv:0907.4622, Jul. 2009.

[14] C. Vecchiola, S. Pandey, and R. Buyya, “High-Performance Cloud
Computing: A View of Scientific Applications,” in 2009 10th
International Symposium on Pervasive Systems, Algorithms, and
Networks (ISPAN), 2009, pp. 4–16.

[15] “Benchmarks | Network-Based Computing Laboratory.” [Online].
Available: http://mvapich.cse.ohio-state.edu/benchmarks/.

[16] D. Battre, N. Frejnik, S. Goel, O. Kao, and D. Warneke, “Evaluation of
Network Topology Inference in Opaque Compute Clouds through End-
to-End Measurements,” in Cloud Computing (CLOUD), 2011 IEEE
International Conference on, 2011, pp. 17–24.

[17] M. Coates, R. Castro, R. Nowak, M. Gadhiok, R. King, and Y. Tsang,
“Maximum likelihood network topology identification from edge-based
unicast measurements,” in Proceedings of the 2002 ACM SIGMETRICS
international conference on Measurement and modeling of computer
systems, New York, NY, USA, 2002, pp. 11–20.

[18] L. Hu, K. Schwan, A. Gulati, J. Zhang, and C. Wang, “Net-cohort:
detecting and managing VM ensembles in virtualized data centers,” in
Proceedings of the 9th international conference on Autonomic
computing, New York, NY, USA, 2012, pp. 3–12.

APPENDIX

for msg in {0,2^0,2^1, ..., maxMessageSize {

for t = 0 : numberTestCases{

for turn = 1 : numProcesses{

peer = processRank xor turn;

if processRank > peer{

for i = 0 : numberRepetitions{

receive(workload from peer);

send(workload to peer);

}

}else{

start recording time;

for i = 0 : numberRepetitions{

send(workload to peer;)

receive (workload from peer);

}

stop recording time;

}

times[t][peer] = (elapsed time)/numberRepetitions;

}

}

commTime[msg][processRank][peer] = min(times[all testcases][peer]);

}

Fig. 7. Hardware probing algorithm.

We developed our hardware-probing module to mainly

measure the point-to-point communication times among
numProcesses process in parallel. The module also measures
many statistical and experimental metrics mentioned in the

methodology section. The user enters a set of parameters to
measure the communication time accurately;the parameters
are:

 numberTestCases: represents the number of
measures to be recorded for the given message
size (set to 10),

 numberRepetitions: represents the number of
repetitionsin each send operation (set to 100),

 maxMessageSize: specifies the maximum
workload (message size) to stop at (set to 128kb).

The module outputsa 3D communication values matrix
that provides the communication times among process pairs, 'i'
and 'j', at message size msg. Such a value is addressed by
commTime[msg][i][j].

The Probing Algorithm:

Fig. 7 shows the used algorithm. The algorithm probes

communication time numberTestCases times, for every

message size in the range from 0, 1 to maxMessageSize

(bytes),in doubling step sizes. A reading time of sending and

receiving a message numberRepetitions times.

The algorithm takes the minimum of these readingsin the
curve fitting stage; finally the algorithm stores the minimum
communication time in a 3D matrix called commTime.

	I. Introduction
	II. VM Topology Identification Method
	A. VMs Generator
	B. Hardware Probes
	C. Curve Fitting
	D. Topology Identifier

	III. Experiments and Results
	IV. Related Work
	V. Conclusions and Future Work
	Acknowledgement
	References
	Appendix
	The Probing Algorithm:

