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Abstract— High performance computing (HPC) on the cloud 

is an emerging approach that can potentially provide a 

significantly cheaper alternative to supercomputers. However, 

clouds are largely oriented towards multiprogramming 

workloads with no significant intercommunications. The 

placement of tightly coupled HPC virtual machines is thus not 

guaranteed to be physically affine, resulting in unpredictable 

communication times. This paper proposes a new cloud 

analytical model that describes the physical placement of virtual 

machines in the communication hierarchy. The model is 

constructed through a set of automated experiments that 

measure virtual machines point-to-point communication speed 

parameters; the parameters are then clustered, and the topology 

of the cloud network seen by the virtual machines is identified. 

As a case study, the paper applies the model to the Amazon 

Cloud; the obtained hierarchical model is used to select a fast 

communicating subset of instances and discarding the other 

instances. For a message-passing all-to-all communication 

operation such selection resulted in 4.1 to 5.5 speedup 

enhancement in performance when randomly executing on a 

similarly sized subset.  

I. INTRODUCTION 

Cloud computing providers exploit economy of scale and 
consolidation of resources [1] to significantly cut down 
administration and computation costs resulting on cheap 
computation. Cloud computing has a potential to provide for a 
cheaper alternative to high performance computation systems. 
However, a major hurdle is the intercommunication variability 
among communicating nodes or instances [2]. 

A cloud system interconnect is typically organized as a 
collection of hierarchically interconnected computing nodes 
[3]; a typical system communication hierarchy starts by  
multicore processors sharing the same computing node; then 
computing nodes sharing the same switch forming a rack; and 
lastly, a group of racks sharing a core switch. A group of 
communicating virtual machine (VMs) is not guaranteed to 
reside on the computing node due to allocation fragmentation; 
thereby the intercommunication varies with every group 
creation. 

Cloud computing relies on virtualization to abstract the 
underlying physical computing resources, allowing for lower 
cost of management and better sharing of the resources. 
However, virtualization hides the mapping between the 

instance and the underlying physical machines; thus the nodes 
are not aware of their physical placement.  

In this paper, we propose a new method to identify the 
physical placement of VMs on the cloud for an arbitrary group 
of VMs. The method computes point-to-point communication 
speeds among the VMs. The obtained values are then 
clustered so that VMs in the same cluster share similar 
communication speeds among all cluster members. This 
potentially allows for achieving more efficient and predictable 
execution of intensively communicating HPC application on 
the cloud. 

The main contributions of this paper are: 

 Modeling and obtaining the parameters of the point-
to-point communication latencies among VMs.  

 Identifying a suitable clustering method that identifies 
the underlying physical interconnection layout on the 
cloud. 

 A case study of all-to-all broadcast group 
communication operation optimization on the Amazon 
Web Services (AWS) cloud. 

Initial results on the application of our method on the all-
to-all group communication operation achieve 4.1 to 5.5 
speedup enhancement in performance, compared to executing 
the same benchmarks on randomly chosen groups of VMs. In 
particular, we choose a smaller group of VMs that have fast 
inter-communication speeds and discards the other VMS. We 
thereby select the best VMs for the given problem. 

The rest of this paper is organized as follows: Section II 
presents a detailed description of the proposed method. 
Section III presents the experiments, results and analysis of 
our method. Section IV gives a quick overview of the related 
work. And, finally Section V concludes the paper. 

II. VM TOPOLOGY IDENTIFICATION METHOD 

The main objective of the method is to generate a 
communication tree that approximates the underlying 
communication structure among the VMs. The VMs are the 
leaves of the tree, and the internal nodes represent a network 
switch. 

We model the point-to-point communication between 
nodes by the following simplified formula [4]: 



Tcomm = Ts + m Tw (1) 

Where Tcomm is total time to transfer a message of m units 
between two particular nodes. Ts is the setup time to start the 
communication operation between the participating nodes. 
This time is required once per a single message transfer 
operation. Tw is the time to transfer a unit message between 
the two nodes. 

We chose such simplified model as it abstracts many of the 
details that would be difficult to obtain their parameters from 
the cloud (such as number of hops, etc).  

We measure the Tcomm via a sequence of blocking ping-
pong message transfer operations similar to the osu_latency 
benchmark [15]. We choose to measure latency as it is a more 
accurate measure of physical node distance than bandwidth. 

One particular issue in measuring Tcomm is that the CPU 
sharing in the cloud can result in any of the communicating 
parties to be preempted. This would increase the perceived 
communication time. To help negate that effect, we repeat the 
point-to-point transfer operation many times and select the 
minimum communication time. The rational here is that the 
minimum is likely to capture the situation where both nodes 
are no preempted. 

The Tw parameter characterizes the propagation delay 
among nodes; we therefore choose it to characterize 
communication switches; in other words, nodes with similar 
Tw are clustered together. 

In the following subsections we describe in detail our 
method steps depicted in Fig. 1.  

A. VMs Generator  

This is the stage where the instances are automatically 
hired from the service provider with the given specifications 
and user credentials as inputs. The specifications of the 
instances are the number of required instances, instances type, 
security group of the instances and the image that those 
instances are created from. The output of this stage is the 
required instances and their private IPs. 

B. Hardware Probes 

At this stage all the measurements are done. Each instance 
probes its neighbors using point-to-point communications with 
different message sizes. The probe operations of all the 
instances are made in parallel. The private IPs of the instances 
are used to automatically create the MPI run command which 
is used to execute all the measurements. The measurements 
are repeated n times (where n is a user input). 

Those measurements are communication time matrix, 
measuring the communication time between every pair of 
instances for different communicated message sizes; the 
metrics measured are average communication time, min/max, 
standard deviation, and coefficient of variation of the 
communication times. 

The minimum communication time matrix is three-
dimensional. The minimum communication time is measured 
for different message sizes from a range that starts from 1 byte 

to a given maximum size with a given step size. For example: 
the range starts from 1 byte to maximum of 500 KB with a 
step size of 10 KB; this gives a range of 50+1 different sizes 
{1, 10000, 20000, … , 500000}. 

C. Curve Fitting 

The given minimum communication time matrix from 
stage #2 are plotted versus the message sizes for each pair of 
nodes. This stage fits the output curves using the following 
simplified formula (1) presented earlier. 

The fitting results in extracting two features Ts -
emphasizing the latency- and Tw -indicating the minimum 
communication time for each pair of nodes. The output of this 
stage is two 2D matrices one for the setup time, Ts, between 
each pair of instances in microseconds, and the second matrix 
is Tw between each pair of instances also in microseconds. 
Both of the matrices are square symmetric matrices of size (np 
x np) with zero trace, where np is the number of instances 
hired. 

D. Topology Identifier 

Here the instances are grouped and clustered based on the 
differences of Tw among them. The applied clustering 
technique is the average linkage clustering [5]. This clustering 
technique initially considers each instance as a single cluster 
and then based on a given threshold, the clusters can be 
merged if and only if the average of differences between each 
instance in each cluster and the other cluster instances is less 
than or equal to the given threshold. 

The output of this stage is a hierarchical cluster in the 
shape of a dendrogram. This diagram represents the 
communication costs between the hired instances in 
microseconds. Moreover, the diagram identifies the network 
topology between the physical machines hosting the hired 
instances. This gives a clue to the closest instances in groups 
with minimal communication costs. This information benefits 
HPC applications to minimize their execution time and 
performance. 
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Fig.  1. The proposed methodology for identifying VMs network topology 



III. EXPERIMENTS AND RESULTS 

Following the methodology described above, the 
experiment begins with automatically creating np instances, 
with a given specification on Amazon EC2. Then using the 
resulting instances' IPs to create an MPI run command to the 
program that probes the instances that are hosted on physical 
machines with only one process per instance. The program 
results in number of matrices mentioned previously. The 
curve-fitting program starts fitting the communication time 
matrix with equation (1). The curve fitting phase produces  Ts 
and Tw matrices.  

As a proof of concept before testing the proposed method 
on the cloud, an experiment was applied in a local machine to 
verify the used model. Then the difference between the real 
measurements (Tcomm vs. M) and the line resulted from the 
curve fitting stage, is measured. The local Machine 
specificationsare  listed in Table 1, below. 

TABLE I.  LOCAL MACHINE SPECS 

Item Description 

Processor Intel® Core™ i7-2670QM CPU @ 2.20GHz × 8 

Memory 8 GB 

Caches 6 MB 

Architecture 64-bit 

O/S Ubuntu TM 12.04 precise LTS 

 
Fig 2 shows the results. 

 

Fig.  2. Communication time between two cores on local machine versus 

different workloads 

 
The linear-fitting results in the following equation: 

 Tcomm = 0.011 M + 20.19 (2)

With coefficient of determination (R²) = 0.999. 

Fig.2 shows that the fitted line is clearly close to the real 
measurements. This result encourages us to proceed in the 
experiments. 

The next step is to verify the model on the cloud and 
analyses the measurements. So, on AWS we begin with only 
two instances with specifications listed in Table 2.  

The purpose of this experiment is to model the 
communication time between two virtualized instances on the 
cloud to check the validity of the proposed model on a virtual 
environment. The communication process works as follows: 
Communicate different message sizes that ranges from zero 
byte to max size of 128 KB per message by doubling the 
message size every step. The measurements are taken 10 times 
for each message size; each time the sender sends the message 
100 times, and the average communication time of those 
communication operations is calculated. Fig. 3 shows the 
output of this experiment with regular fitting. 

TABLE II.  VIRTUAL MACHINE SPECS 

Item Description 

Type M1. large 

Processor 2 cores each with 2 EC2 compute units 

Memory 7.5 GB 

I/O 

Performance 
500 Mbps 

Architecture 64-bit 

O/S Ubuntu TM 12.04 precise LTS 

 

 

Fig.  3. Communication time between two virtual instances on the cloud 

 

Equation 3 is the resulted fitting-line equationwith R
2
 = 

0.918. 

 Tcomm = 2.261 M+ 23590 (3) 

 

These results on the cloud areless accurate than the 
measurements on the local machine due to the virtualization 
environment and the variation of the workloads on the 



physical machines hosting the VMs on the cloud. However 
these results are acceptable. 

After proofing the concept that our model can represent the 
communication between virtualized instances on the cloud, we 
start some experiments that pass through the whole proposed 
method's stages.  

The experiments were done over 16 virtualized instances 
with specifications listed in Table 2. The "VMs generator" 
module automatically hired the required instances, and then 
the "Hardware prober" probes the physical machines hosting 
the virtualized instances and outputs the communication 
matrix to the "Curve fitting" stage.This stage automatically fits 
the communication time between each pair of instances and 
passes the Tw matrix to the "Topology identifier" stage. This 
stage applies the average linkage clustering on the given 
matrix and results in the hierarchal cluster in Fig. 4 based on 
Tw and in Fig. 5 based on Ts.  We consider that the cluster 
based on Tw represents the real topology of the hired VMs 
because Ts is the absolute term for the communication 
equationthat is affected by the state of the communicating 
machines more than the communication channel or distance. 

As a proof of accuracy of our proposed topology, we use a 
message passing all-to-all broadcasting communication 
operation that is executed on different groups of VMs. Each 
group consists of 8 VMs. These groups are as follows: a group 
of the closest machines according to the proposed topology 
based on Tw, a group of the closest machines according to the 
proposed topology based on Ts, a group of the farthest VMs 
according to the proposed topology based on Tw, a group of 
random nodes with predefined numbers (from 0 to 7) and 
another group of random VMs (from 8 to 15). Then we 
compare the execution times of the all-to-all benchmark with 
different message sizes {0, 100, 512, 1K, 10K, 50K}Bytes. 
This comparison is presented in Table 3 and Fig. 6. 

 

Fig.  4.Tw based Hierarchal cluster represents the communication distances 

between the virtual instances. The vertices represent the instances and the 

weighted links are the communication distance between them in 

microseconds. 

 

Fig.  5. Ts based Hierarchal cluster represents the communication distances 

between the virtual instances. The vertices represent the instances and the 

weighted links are the communication distance between them in milliseconds. 

TABLE III.  EXECUTION TIMES IN MICROSECONDS OF THE BENCHMARK 

ON DIFFERENT GROUPS OF INSTANCES WITH DIFFERENT WORKLOADS 

Message 

Size  

(Byte) 

 

 

Group 

name 

0 100 512 1K 10 K 50 K 

Tw Based 

Closest 

VMs 
638 1258 1353 1313 1889 7349 

Tw Based 

Furthest 

VMs 
12175 24570 23804 25305 31783 97485 

Ts Based 

Closest 

VMs 

3563 7416 7394 7933 11906 39393 

Random 

Group 1 

(0:7) 
3510 6335 6607 6428 9283 32393 

Random 

Group 2 

(8:15) 

2813 5980 5665 6098 8304 30140 

 
The enhancement in the execution time of the benchmark 

is obvious in Table 3. The closest VMs group according to Tw 
clustering is better than the other groups by speedups listed in 
table 4. 

The enhancement varies in the range between 4.1 and5.5 
speedup for the random chosen instances, where the 
enhancements are much bigger comparing to the farthest 
chosen group where the enhancement speedup varies from 
13.3 speedupto19.5 speedup according to the applied 
workload on the benchmark.The execution time of the 



benchmark in the previous experiment isaveraged from 1000 
times of execution for every message size. 

TABLE IV.  ENHANCEMENT IN PERFORMANCE IN SPEEDUP FOR THE 

RANDOM AND WORST GROUPS COMPARING TO THE CLOSEST GROUP BASED 

ON BOTH TW AND TS WITH DIFFERENT WORKLOADS 

Message Size  

(Byte) 

 

Group name 

0 100 512 1K 10 K 50 K 

Tw Based Closest 

Vs. Farthest 
19.1 19.5 17.6 19.3 16.8 13.3 

Ts Based Closest 

Vs. Farthest 
3.4 3.3 3.2 3.2 2.7 2.5 

Tw Based Closest 

Vs. Random1 
5.5 5.0 4.9 4.9 4.9 4.4 

Ts Based Closest 

Vs. Random1 
0.99 0.85 0.89 0.81 0.78 0.82 

Tw Based Closest 

Vs. Random2 
4.4 4.8 4.2 4.6 4.4 4.1 

Ts Based Closest 

Vs. Random2 
0.79 0.81 0.77 0.77 0.70 0.77 

 
From the previous results, it is apparent that our model 

represents the communication time on the virtualized 
environment on the cloud, and identifies the topology of the 
used instances accurately, as the execution time of the all-to-
all broadcast group communication varies according to the 
distances between instances in our hierarchical cluster. Also, 
as we assumed Ts cannot represents the cloud's internal 
topology as it is the absolute term in the assumed 
communication model that is affected by many factors that is 
not related to the nature of communication itself. 

 

 

Fig.  6. The difference between execution times for various groups of 

instances. 

IV. RELATED WORK 

There have been many attempts in the literature to address 
HPC on the cloud. The closest approach to this work is the 
network tomography inference approach. In this approach two 
main probing mechanisms are usually utilized; the first is 
round-trip probe (as in our work), and the second is sandwich 

probing [17]. The latter relies on a sending node transmitting 
two packets to a destination node separated by a larger packet 
addressed to an alternate node; the delay perceived by the first 
destination is correlated with similarity of the two destination 
nodes. Such information is then used to construct a 
hierarchical network topology structure. 

Battré et al.[16]investigate the use of this approach on a 
mid-sized experimental cloud setup. They confirmed that the 
round-trip time probingis more accurate than sandwich 
probing in the virtualized environment, mainly due to large 
timing variation introduced by the virtual machine monitors. 
However, the straightforward application of round-trip 
probing still suffered significant inaccuracies. Our work 
proposes an enhanced round-trip probing method, by 
integrating a simple two-parameter communication model, 
experimentations, curve fitting, and a generalized cluster 
hierarchy trees  (instead of binary trees). The method runs in 
parallel, requiring linear-time complexity, rather than the 
typical underlying quadratic complexity of round-trip probing. 

In a second approach the service provider offers high 
speed interconnected computing clusters, such as Amazon 
Cluster Computer (CC) machines [7] and Penguin Computing 
HPC service [8]. The former is investigated by Expósito et al. 
[9]; they confirmed the cost-efficiency of the Amazon EC2 
CC1 and CC2 instance types with respect to computation, 
point-to-point communication and scalability performance. 
However, the trade-off here is the much higher service price 
than standard instances. In our approach we potentially 
overcome this trade-off by placing the tasks on much closer 
VMs with the same amount of renting cost (aside from an 
initial experimental cost including a short-term use of distant 
VMs, that are terminated afterwards).. 

In another approach, the authors considered standard, non-
cluster instances. Ostermann et al. [10] have evaluated and 
analyzed the performance of the Amazon EC2 cloud services 
for scientific, distributed computing. They found that the 
current performance is not sufficient to execute a scientific 
application on the cloud. However, they mainly analyzed the 
effect of virtualization. Jackson et al. [2] also evaluated the 
cloud while running HPC applications and showed that the 
more the HPC communicate the more the performance 
becomes worse, emphasizing the importance of the network. 
Our work thus complements these studies by considering the 
communication aspect on the cloud. 

A number of researches have worked in improving the 
performance of executing the applications that demands 
clusters of VMs during its execution. Their work was on how 
to conduct a reliable service available and satisfying the user 
demanded resources to meet the Service Level Agreement 
minimizing the communication cost. One of the solutions by 
Jayasinghe et al. [11] is to model both the data center and the 
application and input them as a graph of virtual machines and 
a graph of data center to a placement engine which use the 
divide and conquer strategy to solve the problem as an 
optimization problem. Then the mapping of the VMs on data 
center's physical machines is solvable as a graph-coloring 
problem. Another work in the same approach is proposed by 
Tantawi[12]; it is a statistical method to bias the selection of 



the samples while performing cross entropy. This resulted in 
making the cross entropy scalable and linear with the size of 
the cloud. This approach of enhancement is a server side one, 
which is contrary to our model that enhance the performance 
of the cluster based applications with blind view of the real 
cloud structure and capacityHu et al.[18] present a lightweight 
system-level method to discover VMs ensembles and their 
interactions. The information helps provide better VM 
management, such as by placing communicating VMs in close 
by physical machines.This work is server side, while our 
approach is form the client side. 

Another approach is to simplify the process of hiring and 
deploying VMs in cluster structures. An example is a 
distributed middle-ware called Cyber aide Creative Service  
[13], which can create distributed VMs on demand as an 
interface to the cloud web services to create and manipulate 
the what called cyber infrastructure as a service (CaaS). 
Another example is Aneka [14], which is an enterprise cloud 
computing platform and solution to develop on demand scale 
applications. Vecchiola et al. [15] demonstrate two examples 
on performing two scientific applications on the cloud using 
Aneka.This approach facilitates the deployment and running 
of VMs on cluster structures.Our work can be integrated with 
one of those systems in this approach, as a future work. 

V. CONCLUSIONS AND FUTURE WORK 

This paper considers the problem of identifying the virtual 
machine placement within the cloud provider network. The 
method does not assume any information provided by the 
cloud provider, thereby allowing for being largely cloud 
provider independent.  

The method has  revealed a large variation of performance 
for the all-to-all group communication operation, with a ratio 
of 19.8. Such result confirms the significance of the VM 
placement problem in the cloud. Moreover, our method 
resulted in a consistent improvement in the overall 
performance, ranging from 4.1 to 5.5 speedups. 

 
The main objective of this paper is to assess the possibility 

of identifying the placement details, and the corresponding 
achievable benefits. Future work is needed to conduct more 
elaborate experiments using a large set of benchmarks, as well 
as further tuning of our model; another interesting area is to 
extend the model to assess the virtualization load on the 
computing node, thereby allowing for further tuning/mapping 
of the parallel tasks to the VMs. 
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APPENDIX 
 

for msg in {0,2^0,2^1, ..., maxMessageSize { 

for t = 0 : numberTestCases{ 

for turn = 1 : numProcesses{ 

peer = processRank xor turn; 

if processRank > peer{ 

for i = 0 : numberRepetitions{ 

receive(workload from peer); 

send(workload to peer); 

} 

}else{ 

start recording time; 

for i = 0 : numberRepetitions{ 

send(workload to peer;) 

receive (workload from peer); 

} 

stop recording time; 

} 

times[t][peer] = (elapsed time)/numberRepetitions; 

} 

} 

commTime[msg][processRank][peer] = min(times[all testcases][peer]); 

}  

Fig.  7. Hardware probing algorithm. 

 
We developed our hardware-probing module to mainly 

measure the point-to-point communication times among 
numProcesses process in parallel. The module also measures 
many statistical and experimental metrics mentioned in the 

methodology section. The user enters a set of parameters to 
measure the communication time accurately;the parameters 
are: 

 numberTestCases: represents the number of 
measures to be recorded for the given message 
size (set to 10),  

 numberRepetitions: represents the number of 
repetitionsin each send operation (set to 100), 

 maxMessageSize: specifies the maximum 
workload  (message size) to stop at (set to 128kb). 

The module outputsa 3D communication values matrix 
that provides the communication times among process pairs, 'i' 
and 'j', at message size msg. Such a value is addressed by 
commTime[msg][i][j]. 

 

The Probing Algorithm: 

Fig. 7 shows the used algorithm. The algorithm probes 

communication time numberTestCases times, for every 

message size in the range from 0, 1 to maxMessageSize 

(bytes),in doubling step sizes. A reading time of sending and 

receiving a message numberRepetitions times. 
 

The algorithm takes the minimum of these readingsin the 
curve fitting stage; finally the algorithm stores the minimum 
communication time in a 3D matrix called commTime. 
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