
Performance Modeling of MPI-based Applications on Cloud
Multicore Servers∗

Abdallah Saad†
Egypt-Japan University of Science

and Technology
New Burj El-Arab, Alexandria
abdallah.saad@ejust.edu.eg

Ahmed El-Mahdy‡
Egypt-Japan University of Science

and Technology
New Burj El-Arab, Alexandria, Egypt

ahmed.elmahdy@ejust.edu.eg

Hisham El-Shishiny§
shishiny@eg.ibm.com

ABSTRACT
While cloud computing is widely adopted in many application do-
mains, it is not yet the case for the high performance computing
(HPC) domain. HPC traditionally runs on homogeneous, high-cost
servers with fast networking providing for predictable performance;
while bare-metal cloud offerings is promising, the underlying hard-
ware is heterogeneous, with slower network connection, making
it difficult to predict performance and hence tune applications. In
this paper we consider performance modelling message passing
interface (MPI)-based applications, being a major class of HPC appli-
cations. In particular, we present a queueing network performance
model to account for computation and communication contentions
on the underlying heterogeneous, relatively slow-interconnect ar-
chitecture of the cloud bare-metal servers. The proposed model
uses a non-linear problem solver to enhance the parameters ac-
quired by profiling. We utilise our model to conduct an initial study
of the performance of two benchmarks from SPECMPI-2007 suite
and two NASA Parallel kernels, executing on a small cluster with
varying number of multicore servers ranging from 2 to 8. Compar-
ing the predicted and actual execution times of workloads with
different number of processes shows 86% average accuracy for the
benchmarks used.

CCS CONCEPTS
•Computer systems organization→Multicore architectures;
• Networks→ Network performance modeling; Network per-
formance analysis; • Computing methodologies → Modeling
methodologies; •Mathematics of computing→Nonlinear equa-
tions;

∗Produces the permission block, and copyright information
†On leaving from Benha University, abdallah.mohamed@feng.bu.edu.eg.
‡On leaving from Alexandria University.
§Former Manager of Advanced Technology and IBM Center for Advanced Studies in
Cairo.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RAPIDO ’19, January 21–23, 2019, Valencia, Spain
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6260-3/19/01. . . $15.00
https://doi.org/10.1145/3300189.3300194

KEYWORDS
Performance Modelling, Message Passing Applications, Cloud Com-
puting, High Performance Computing, Bare Metal Service

ACM Reference Format:
Abdallah Saad, Ahmed El-Mahdy, and Hisham El-Shishiny. 2019. Perfor-
mance Modeling of MPI-based Applications on Cloud Multicore Servers. In
Rapid Simulation and Performance Evaluation: Methods and Tools (RAPIDO
’19), January 21–23, 2019, Valencia, Spain. ACM, New York, NY, USA, Arti-
cle 4, 6 pages. https://doi.org/10.1145/3300189.3300194

1 INTRODUCTION
Cloud computing has demonstrated its efficiency and benefit for
several applications due to its elasticity, easy of usage, scalability,
availability and its ‘pay as you go’ business model. Also, the cloud
is able to produce a better turnaround time than the on-premise
HPC clusters, considering the waiting time by cluster management
systems [8].

However, its utility for HPC applications is still questionable as
the HPC users face two main challenges [9]: the relatively higher
network latency than the on-premise clusters’ network that lim-
its the scalability of the tightly coupled parallel applications, and
the difficulty to estimate the cost of running HPC applications on
the cloud unpredictable environment. Egwutuoha et al. [4] recom-
mended to use bare-metal servers instead of the cloud instances
when running the tightly coupled parallel applications. Currently
many cloud providers which include IBM, Amazon, Alibaba, offer
dedicated bare-metal cloud machines for HPC applications. How-
ever, bare-metal servers still suffer from being heterogeneous, and
of relatively lower networking speeds [10] that increases the con-
tention on the network queues. Such characteristics make per-
formance and cost prediction more complicated, making it more
difficult to performance/cost optimise parallel applications for such
cloud environment.

In this paper we propose an analytical performance model based
on queueing networks to capture the underlying resource con-
tention for the underlying heterogeneous architecture. The model
targets the important class of MPI applications, which is typical for
the HPC domain. The proposed performance model is used to pre-
dict the execution time of parallel MPI-based applications running
on multicore servers. The model parameters are acquired using
a non-linear solver, allowing for general applicability. Then, the
prediction procedure can be done in a very short time for different
configurations of parameters allowing for a better exploration for
the design space. The model helps in answering several questions
such as what is the turning point where increasing the scalability of

https://doi.org/10.1145/3300189.3300194
https://doi.org/10.1145/3300189.3300194

RAPIDO ’19, January 21–23, 2019, Valencia, Spain Abdallah Saad, Ahmed El-Mahdy, and Hisham El-Shishiny

the parallel program is worthless from the performance/cost view
point?; what is the best grouping of servers that fits the workload
needs given the communication distances between the servers and
the processing powers of each?; and how the distribution of pro-
cesses on servers affects performance, especially that the number
of cores per server can vary?

To verify the proposed model, an initial experiment is conducted
on three different clusters sizes of cloud physical machines of two,
four and eight nodes. Two benchmarks of the SPECMPI-2007 bench-
mark suite, and two NASA parallel kernels are used as the HPC
MPI-based workloads. Results show an average accuracy of 86%
when comparing predicted with actual execution times on different
configurations. Also, this work is compared with a closely related
work [14] using two NASA parallel benchmarks [3] running on
the different size clusters. For configurations with homogeneous
network topology (single process per node) both models achieve
similar accuracy; however, for heterogeneous topology (multiple
processes per node) the accuracy of the other model degrades sig-
nificantly.

The rest of this paper is organised as follows: related work is
presented in Section 2. Section 3 describes the proposed perfor-
mance model and its corresponding parameters acquisition. The
methodology used in the modelling process is depicted in Section 4.
Section 5 presents and discusses the model validation experiments.
Finally, Section 6 concludes the paper and discusses future work.

2 RELATEDWORK
Several work is done to evaluate the usage of the cloud as an alter-
native to ordinary HPC systems. Jackson et al. [7, 11] and Zhai et
al. [18] examined the usefulness of cloud computing for e-Science
and HPC applications, and Wang et al. [16] studied the impact of
virtualisation on network performance of Amazon EC2 data centre.
Gupta et al. [6] evaluated the performance of HPC applications on
different execution platforms; cluster, grid and a private cloud. Their
work shows the performance bottleneck caused by communication
on the cloud even with dedicated 10 Gigabit Ethernet network
medium. Also, they demonstrate how the performance instability
and unpredictability affect the cost of long running applications.
Marathe et al. [8] investigate the cloud and HPC clusters using
different metrics of comparison; turnaround time and cost. their re-
sults show the inefficiency of communication intensive applications
on Amazon EC2.

Another trend is to model the cloud system for performance
prediction of running HPC applications. Shi et al. [14] introduce
an instrumentation assisted complexity analysis methodology for
program scalability analysis. Their methodology is based on Am-
dahl’s and Gustafson’s laws. They manage to predict the execution
time for parallel programs on cloud and HPC cluster. Their results
show 71% average accuracy between actual and predicted execu-
tion times of five NAS benchmark ‘kernels’ on HPC cluster, where
our proposed model achieves 82.5% average accuracy of predict-
ing execution of two SPECMPI benchmarks. Our model prediction
seems better on the overall results. However, the clusters size used
in experimentation of the proposed model is smaller than the size
of the used cluster in their experiments.

Beyond the cloud virtualised environment, Egwutuoha et al. [4]
recommends to run the tightly coupled parallel applications on a
bare-metal cluster of servers on the cloud to gain the benefit of the
cloud availability—small queue waiting time to start the requested
service—and to avoid the cloud relatively slow network compared
to HPC clusters.

In order to predict the scalability of parallel programs, Barnes et
al. [1] use a modified regression model. In their work, they use sev-
eral program executions on different number of working processing
nodes as a training test to extrapolate the performance of running
the parallel program with untrained configuration of processing
nodes’ count. Their model shows accurate best-fit predictions. How-
ever, their work is not flexible to explore and explain the effect of
changes in the parameters of interest, e.g. number of cores used per
server, allocation of servers in the underlying network, the current
network state and the amount of currently available processing
power per server. Also, Bridges et al. [2] provide a work in progress
to model the MPI main performance characteristics of communi-
cation operations using a simple closed queuing network model.
They validate their work using simple communication benchmarks
running on a tiny cluster of two multicore machines. Their work
focuses on modelling the communication operations and does not
include modelling neither the hardware characteristics, nor the
computation operations of the parallel programs.

3 PERFORMANCE MODEL OVERVIEW
The heterogeneity of the underlying hardware and the underlying
relatively slow network would potentially result in contention on
both the CPUs and network; themodel therefore considers queueing
networks for modelling such contentions. Moreover, to generalise
the applicability of our model, we decompose/separate the model
into two main components: one for modelling the running work-
load (software), and the other for modelling the underlying system
(hardware). This provides for larger design space exploration.

This section is organized as follows: Section 3.1 discusses the
workload model; Section 3.2 describes the underlying system and
its interaction with the workload model; Sections 3.3, 3.4 and 3.5
discuss model parameters acquisition.

3.1 Workload modelling
We consider the workload application as a long sequence of in-
structions,w , running on n processes. Each process is repeatedly
invoked to perform a number of instructions ϕ followed by a send
and receive operation. Every single invocation of the process is
called a job1. The number of jobs invoked during the program run-
ning time equals the number of sends per process s . Accordingly,
we have the following equation holding:

w = ϕns(n) (1)

Where s andw are functions of n, depending on the current bench-
mark.
We consider the MPI program to have a fixed number of cycles;

1This is not to be confused with an MPI job; a job here refers to a queueing network
job, which is a process cycle

Performance Modeling of MPI-based Applications on Cloud Multicore Servers RAPIDO ’19, January 21–23, 2019, Valencia, Spain

each cycle is a sequence of computations ϕ that ends with a com-
munication operation. When n processes are running, the cycles
are distributed uniformly over the processes as jobs.

3.2 Queueing Network and process life cycle

Net J

CPU J

Net J

CPU J

Net J

CPU J

Net J

CPU J

Net J

CPU J

Net J

CPU JIN

OUT

CPU jCPU i

Net i

N
Jobs
Pool

Compute Node jCompute Node i

Net j

Type i Jobs FlowMixed Jobs Flow Type j Jobs Flow

Figure 1: A cluster of k-machines modeled in a queueing network.

Fig. 1 presents our closed-queueing network system for mod-
elling the execution of an MPI program on a cluster of k multicore
machines. The figure shows the queueing network for two arbi-
trary nodes i and j. All other nodes on the cluster have the same
structure; all nodes share a centralised job pool. A job represents a
single invocation of a process (a cycle). Initially, jobs reside in an
MPI jobs pool, which is a collection of jobs ready for execution.

A job enters the system through the ‘IN’ port, and eventually
exits through the ‘OUT’ port and returns back to the pool, complet-
ing an execution cycle. Then, a job is scheduled immediately for
another cycle, and this process repeats.

During the job life cycle, the job is distributed over one of the
k processing nodes (node i). The job starts using the processing
powers of node i through CPU i queue to perform its ϕ computation
sequence. After that, the job begins a communication operation
with another corresponding job located either locally on node i or
remotely on a different processing node (node j). The local com-
munication operations are performed on the CPU queue as a com-
munication overhead quanta, whereas the remote communication
operations are done through the processing node’s network queues
of the two communicating nodes, Net i and Net j.

3.3 Service time calculation
The service time is the average time required to serve a job visiting
a queue. Thus, for the case of the CPU queues, the service time is
calculated such that it is the time required to process the ϕ instruc-
tions of a job. Thus, the service time of the CPU can be computed
as: scpu = kϕ, Where k is a given constant representing the time to
execute a single instruction.

Now, assuming that the CPU has c cores, the service time will
improve with increasing number of jobs inside the CPU queue, n,
until reaching the server’s capacity. Thus:

scpu =
kϕ

min(n, c)
(2)

Assuming a fixed workload and substituting for ϕ = w/ns(n), we
get:

scpu =
kw

s(n)nmin(n, c)
(3)

Now, consider the network part where the service time of the Net
queue is the time required to communicate an average size message
between two nodes. We define the average message size,m, as a
function of n; and the number of total messages is given by s(n)n.
Therefore, the mean service time of the network can be represented
as the communication time of the average message size for a given
number of processes. The simplified cost model for communicating
messages [5] is used to compute the communication time as follows:

snet = Ts +m(n)Tw (4)

Where, Ts is the start-up time to handle a message at the two
communicating nodes, and Tw is the per word transfer time. To
simplify the model, we assumeTs = 0, andm(n) =ma/n +mb . Thus,

snet = (ma/n +mb)Tw (5)

ma andmb are parameters of modelling the message size variation
with respect to n. These parameters can be calculated by fitting the
workload profiling data that contains the workload’s communica-
tion behaviour with respect to n. Where, Tw can be obtained using
the methodology described in [13]. In order to calculate the con-
stants values in the CPU service time equation, k andw (for a fixed
size workload), we give these constants initial values and consider
the outcome service time as an initial guess to a non-linear problem
solver, e.g. Gauss-Newton Algorithm [17], to get the best fit for
these constants. Thus, sCPUguess and sNetguess can be defined
respectively as;

sCPU_guess =
CPU_Constant
s(n)nmin(n, c)

(6)

sNet_guess = snet × Net_Constant (7)

Where, CPU_Constant = kw and Net_Constant represents the im-
perfection in probing the network state.

3.4 Visit ratio calculations
The visit ratio of a queue is the average number of times a job will
visit the queue during its life cycle. In other words, it is the number
of quanta of processing/communication required by a job assuming
that each visit takes a certain time quantum.

In order to calculate a visit ratio, we need to consider the job’s
average CPU quanta spent during both its computation and the
communication overhead processing. We start by calculating the
communication overhead by profiling the parallel application on a
physical machine under no contention condition; where there is
no network communication time and all jobs are communicating
locally.

Now, let us consider the time required to finish a job life cycle
(Cycle_time); it consists of the time to execute the job’s instructions
(Tcomp), the network time (Tnw) the job needs to communicate
remotely, and the communication overhead time (Toh) that mimics
the communication waiting time the job spends waiting for its
adjacent job to prepare the response of the communicated message.
Thus, we can define: Cycle_time = Tcomp +Tnw +Toh. And thus,
the cycle time for each process (Process_cycle_time) is defined as:
Process_cycle_time = Cycle_time/n.

RAPIDO ’19, January 21–23, 2019, Valencia, Spain Abdallah Saad, Ahmed El-Mahdy, and Hisham El-Shishiny

By profiling the parallel application using a number of running
processes that is less than or equal to the available processing units
(no CPU contention) we get the execution time of the running ap-
plication (Texe), and the wait time for all the MPI communication
operations (MPI_Wait) performed by all processes. For that parallel
execution, we assume all processes to start and end execution to-
gether. According to that, the application execution time represents
the running time of a single process. Thus, the per process cycle
time is defined as Process_cycle_time = Texe/s .

Since the profiled run was on a single machine, the Tnw is
neglected. And Toh from profiling can be represented as; Toh =
MPI_Wait/s . Thus, in this caseTcomp is defined asTcomp = Texe−
Toh.

By knowingTexe,Tcomp andToh, we can compute the sub-visit
ratio of computation time spent during the job cycle time to the
total cycle execution time (Vcomp). And similarly, the sub-visit
ratio of communication overhead time of a job cycle to the cycle’s
total execution time (Vcomm). Where, Vcomp = Tcomp/Texe and
Vcomm = Toh/Texe. After calculating the sub-visit ratios needed,
Vcomp and Vcomm, we can deduce the job visit ratio to each pro-
cessing node’s CPU queue. Let’s assume a compute node i; the CPU
queue of node i is visited by all the jobs located originally on node
i to perform their computation. Also, the jobs located on node i
would re-enter the CPU queue again for doing the communication
overhead if these jobs are going to communicate locally. Finally, the
CPU queue of node i is possibly visited by jobs located originally
on different compute nodes to make remote communication with
adjacent jobs on node i . Thus, the visit ratio of the CPU queue of
node i is defined as:

VCPUi =
ni
n
Vcomp +

ni
n

ni − 1
n

Vcomm +
n − ni
n

ni
n
Vcomm (8)

Where ni
n is the ratio of node i jobs to the total number of running

jobs, nin
ni−1
n is the ratio of jobs of node i that possibly could com-

municate locally with jobs of node i as well, and n−ni
n

ni
n is the ratio

of jobs originally located outside node i and performing remote
communication operations with jobs of node i .

Similarly, the visit ratio for the network device queue (Vneti) can
be deduced. The jobs of node i that are communicating remotely
visit node i’s network queue (neti). Also, jobs located outside node
i but communicating remotely with jobs of node i are going to visit
neti in their return journey. Thus, we can define Vneti to be:

Vneti =
ni
n

n − ni
n

+
n − ni
n

ni
n

(9)

Where ni
n

n−ni
n represents the ratio of jobs of node i doing remote

communication with jobs of other nodes, and n−ni
n

ni
n represents

the ratio of jobs of nodes other than i that are communicating
remotely with jobs of node i .

3.5 Job response time calculations
Now let us call the system response time to be R; it represents
the execution time for a ϕ sequence. Since every process has s(n)
sequence of ϕ to execute, each process response time is s(n)ϕ. And
since we assume that all n parallel sequences enter the system at
the same time and finish execution at the same time, the system
total execution time, T , for thew instructions is:

T = Rs(n) (10)

We profile the workload for different number of uniformly dis-
tributed running processes, to get the execution time for each and
to profile the communication operations to help modelling them
for any given number of running processes. For example, mod-
elling the average size of messages for different n,m(n) as An−B
and the average number of sends per process s(n) as C ln(n) + D.
Where A,B,Cand D are constants calculated using the gathered
profiling data. Using these profiling data, the CPU_Constant and
Net_Constant are calculated using GNA nonlinear problem solver.

Using the service time and visit ratio, the average response time
of jobs (R) to complete one life cycle is calculated. In our model, we
use a numerical solution to get R while the workload is parallelised
over n processes. Mean value analysis (MVA) algorithm [12] is used
to calculate R, knowing the values of service time and visit ratio
for all queues in our queueing network model.

4 PROPOSED SYSTEM DESIGN
The proposed system shown in Fig. 2 is used to model both the
multicore system available resources and the MPI-based application
required resources as well. The system starts with two parallel steps:

• the application profiler runs theMPI-based application (more
than two times) with test input data to profile the program
communication behaviour with respect to the variation in
number of working processes,

• the hardware prober gathers information about the available
resources and its current state.

If these information are known a priori, then those parallel steps
are skipped. Then, the output from the application profiler and the
hardware prober move to the initial model for calculating the guess
service time and visit ratio for each CPU queue and NW queue for
each compute node in the system. At that instant, the system has
two paths to go based on the availability of the final CPU and NW
constants:

• if available; the mathematical model uses them to calculate
the service time and visit ratio for each queue in the queuing
network. Afterwards, the mean value analysis (MVA) tech-
nique is used to numerically estimate the response time of
the system for any given number of processes, then, print it
to the user and the system exit.

• if not available; the non-linear problem solver, Gauss-Newton
Algorithm (GNA), is used to find the values of the constants
that minimise the error between the expected response time
and the execution times previously measured during profil-
ing. To do that, the GNA uses the proposed model equations
with the initial service times and sub-visit ratios to get the
temporal service times and visit ratios for each queue in the
queuing network. Then, it passes them to the MVA tech-
nique to calculate the predicted response time and send it as
a feedback to the GNA. If the error is less than a predefined
threshold ϵ , these constants’ values (for this workload on
this multicore system at this state) are stored and the pro-
posed system finishes. Otherwise, the system repeats that
path until the system finds the constants that minimise the
error to be less than ϵ .

Performance Modeling of MPI-based Applications on Cloud Multicore Servers RAPIDO ’19, January 21–23, 2019, Valencia, Spain

Figure 2: Proposed system design

5 EXPERIMENTS, RESULTS AND ANALYSIS
In this work, the ‘126.lammps’ and ‘130.socorro’ benchmarks of
SPECMPI-2007 benchmark suite [15] are used as the MPI-based
workload, as well as two kernels from NASA Parallel benchmark.
Clusters of 2, 4 and 8 multicore compute nodes are used as the un-
derlying system with 1 GBit/s Ethernet network. All of the compute
nodes are running CentOS-7.4 release. The clusters specifications
are shown in Table 1. The system runs MPICH 3.1 and gcc 4.8.5
tool chain.

Table 1: Clusters Specifications
Num of Nodes Memory Processors Num of
nodes variability Size (GB) model cores

2 homogeneous 24 E5620 16
4 homogeneous 24 E5620 32

8

4x 24 E5620

882x 48 E5645
1x 24 E5-2450
1x 32 E5-2450

After gathering and calculating all the data needed to calculate
the service time and the visit ratio to the queueing network model
queues, both service times and visit ratios are used as an input to
the MVA algorithm to calculate the response time R numerically.
Finally, from Equ. 10 the predicted execution time is calculated for
the number of running processes n.

Fig. 3a, Fig. 3b and Fig. 3c show a comparison between our model
prediction and the actual measurements of running ‘lammps’ and
‘socorro’ benchmarks on the cluster of two, four and eight nodes,
respectively. The benchmarks are runwithmedium reference (mref)
data set as it is more reliable workload than the test data size that has
a very short execution time which is more susceptible to noise. For
all sub-figures in Fig. 3, The secondary Y-axis represents the actual
and predicted execution time of the ’Socorro’ benchmark, where
the primary Y-axis represents the execution time for ’Lammps’
benchmark. The results illustrate the model prediction for different
parallel workloads.

In order to measure the model accuracy, two statistics are used;
coefficient of variation (CV) and mean absolute percentage error
(MAPE). The Accuracy is calculated by subtracting MAPE from 100.
On average for the three different clusters, the predicted execution
time for ’Socorro’ was accurate by 89.8%with average CV = 0.16 and,
’lammps’ achieves 82.3% accuracy with average CV = 0.24. Also,
Fig. 3 shows the turning points at which scaling up the parallelism
of the program do not have a significant impact on the performance.
For a cluster of two nodes, lammps execution time starts to saturate
using 16 cores while socorro saturates using 8 cores only. For four
nodes the saturation happens at 24 and 16 cores for lammps and
socorro respectively. Where using a cluster of eight noeds, the
program scalability saturates at 36 and 40 cores for lammps and
socorro respectively.

There is another close work done to model and predict the cloud
system for running HPC applications without using the queueing
networks; Shi et al. [14] introduce an instrumentation assisted com-
plexity analysis methodology for program scalability analysis. Their
methodology is based on Amdahl’s and Gustafson’s laws. Their
work is re-implemented on the same experimental setup described
in this paper for fair comparison. Two kernels of NASA parallel
benchmark suite are used in this comparison; CG and MG with
class-C problem size for both. The prediction of their model and
the proposed model against the actual measured execution time are
shown in Fig. 4. Their model does not count for the heterogeneity in
the communication operations in parallel applications where there
are inter- and intra- communication operations among the working
processes. Their model counts only for intercommunication oper-
ations among the processing units not the intra-communication
operations occurred inside the same processing unit. So, the accu-
racy for both models are almost the same for the experiments where
every server in the working cluster contains only one process; up
to 8 servers. The average accuracy for both kernels was 89% for
the proposed model where the scalability analysis model achieves
87.3% accuracy. However, accounting for the intra-communication
operations with no resources contention (using the available num-
ber of cores only), the proposed model results in 87.4% average
accuracy for both kernels preserving the same level of accuracy,
where the scalability analysis model’s accuracy degrades to only
61%.

6 CONCLUSION AND FUTUREWORK
In this paper we propose an analytical performance model for pre-
dicting the performance of HPC MPI applications on the cloud
bare-metal multicore servers. The model considers the contention

RAPIDO ’19, January 21–23, 2019, Valencia, Spain Abdallah Saad, Ahmed El-Mahdy, and Hisham El-Shishiny

0 2 4 6 8 10 12 14 16 18
0

1000

2000

3000

4000

5000

6000

0

1500

3000

4500

6000

7500

9000

Lammps Expected Exe Time Lammps Actual Exe Time

Socorro Expected Exe Time Socorro Actual Exe Time

Number of Running Processes

T
im

e
 (

S
e

c)

T
im

e
 (

S
e

c)
(a) Cluster of two machines.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
500

1200

1900

2600

3300

4000

4700

5400

6100

6800

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Lammps Expected Exe Time Lammps Actual Exe Time

Socorro Expected Exe Time Socorro Actual Exe Time

Number of Running Processes

T
im

e
 (

S
e

c)

Ti
m

e
(S

ec
)

(b) Cluster of four machines.

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

250

750

1250

1750

2250

2750

3250

3750

4250

4750

-900

-500

-100

300

700

1100

1500

1900

2300

2700

Lammps Expected Exe Time Lammps Actual Exe Time

Socorro Expected Exe Time Socorro Actual Exe Time

Number of Running Processes

T
im

e
 (

S
e

c)

T
im

e
 (

S
e

c)

(c) Cluster of eight machines.
Figure 3: Running time prediction results of SPEC-MPI benchmarks; Lammps and Socorro on three different size clusters.

0 4 8 12 16 20 24 28 32 36
0

20

40

60

80

100

120

140

160

180

Scalability Analysis Method Proposed Model Actual Exe Time

Number of Processing Units

T
im

e
 (

S
e

c)

(a) CG benchmark.

0 4 8 12 16 20 24 28 32 36
0

5

10

15

20

25

Scalability Analysis Method Proposed Model Actual Exe Time

Number of Processing Units

T
im

e
 (

S
e

c)

(b) MG benchmark.
Figure 4: Proposed model running time prediction results of NAS
Parallel Benchmarks; CG and MG compared to the scalabilty analy-
sis method prediction.

on both computation and communication resources through mod-
elling them as a queueing network. In addition, the model accounts
for the heterogeneity with the cloud bare-metal servers, where the
model considers the processors speed and available number of cores
(which varies among servers) as parameters as well as considering
both the intra and inter communication operations between pro-
cesses inside the same server or among different servers. For our
experiments, we consider a cluster of multiple bare-metal cloud
servers as the underlying system and two benchmarks from the
SPECMPI suite as well as two kernels from NASA Parallel bench-
marks suit as the workload. The results show a prediction, with
86% average accuracy, to the execution times of the two running
benchmarks for different configurations of compute nodes; two,
four and eight different machines.

Thus the model can potentially be used to assess the cost of
resource usage on the performance of the cloud physical machines
with different virtual to physical configurations, and to aid in de-
veloping better schedulers, which is an important area for future
work. In particular, the queueing service times can account for the
hypervisor overhead. Also, the number of working processes on
each processing node would reflect the number of working virtual
machines on each physical host, allowing for modelling resource
sharing contention. Moreover, we need to extend the model to
account for interference with other workloads running simultane-
ously on the same multicore machines.

REFERENCES
[1] Bradley J. Barnes, Barry Rountree, David K. Lowenthal, Jaxk Reeves, Bronis

de Supinski, and Martin Schulz. 2008. A Regression-based Approach to Scala-
bility Prediction. In Proceedings of the 22Nd Annual International Conference

on Supercomputing (ICS ’08). ACM, New York, NY, USA, 368–377. https:
//doi.org/10.1145/1375527.1375580

[2] Patrick G. Bridges, Matthew G. F. Dosanjh, Ryan Grant, Anthony Skjellum, Shane
Farmer, and Ron Brightwell. 2015. Preparing for Exascale: Modeling MPI for
Many-core Systems Using Fine-grain Queues. In Proceedings of the 3rd Workshop
on Exascale MPI (ExaMPI ’15). ACM, New York, NY, USA, Article 5, 8 pages.
https://doi.org/10.1145/2831129.2831134

[3] NASA Advanced Supercomputing Division. [n. d.]. NASA Parallel Benchmarks
Suite. https://www.nas.nasa.gov/publications/npb.html.

[4] Ifeanyi P Egwutuoha, Shiping Chen, David Levy, and Rafael Calvo. 2013. Cost-
effective Cloud Services for HPC in the Cloud: The IaaS or The HaaS?. In Pro-
ceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA). 217.

[5] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. 2003. In-
troduction to Parallel Computing. Pearson Education Limited, Chapter Parallel
Programming Platforms, 58–60.

[6] Abhishek Gupta, Laxmikant V. Kalé, Dejan S. Milojicic, Paolo Faraboschi, Richard
Kaufmann, Verdi March, Filippo Gioachin, ChunHui Suen, and Bu-Sung Lee. 2012.
Exploring the Performance and Mapping of HPC Applications to Platforms in the
Cloud. In Proceedings of the 21st International Symposium on High-Performance
Parallel and Distributed Computing (HPDC ’12). ACM, New York, NY, USA, 121–
122. https://doi.org/10.1145/2287076.2287093

[7] J. Li, M. Humphrey, C. van Ingen, D. Agarwal, K. Jackson, and Y. Ryu. 2010.
eScience in the cloud: A MODIS satellite data reprojection and reduction pipeline
in the Windows Azure platform. In IPDPS 2010. 1–10. https://doi.org/10.1109/
IPDPS.2010.5470418

[8] Aniruddha Marathe, Rachel Harris, David K. Lowenthal, Bronis R. de Supinski,
Barry Rountree, Martin Schulz, and Xin Yuan. [n. d.]. A Comparative Study of
High-performance Computing on the Cloud. In HPDC ’13.

[9] M. A. Netto, R. L. Cunha, and N. Sultanum. 2015. Deciding When and How
to Move HPC Jobs to the Cloud. Computer 48, 11 (Nov. 2015), 86–89. https:
//doi.org/10.1109/MC.2015.351

[10] Paul Rad, AT Chronopoulos, P Lama, Pranitha Madduri, and Cameron Loader.
2015. Benchmarking bare metal cloud servers for HPC applications. In Cloud
Computing in Emerging Markets (CCEM), 2015 IEEE International Conference on.
IEEE, 153–159.

[11] Lavanya Ramakrishnan, Keith R. Jackson, Shane Canon, Shreyas Cholia, and John
Shalf. 2010. Defining Future Platform Requirements for e-Science Clouds. In SoCC
(SoCC ’10). ACM, NY, USA, 101–106. https://doi.org/10.1145/1807128.1807145

[12] M. Reiser and S. S. Lavenberg. 1980. Mean-Value Analysis of Closed Multichain
Queuing Networks. J. ACM 27, 2 (April 1980), 313–322. https://doi.org/10.1145/
322186.322195

[13] A. Saad and A. El-Mahdy. 2013. Network Topology Identification for Cloud
Instances. In 2013 Int. Conf. on Cloud and Green Computing. 92–98. https://doi.
org/10.1109/CGC.2013.22

[14] J. Y. Shi, M. Taifi, A. Pradeep, A. Khreishah, and V. Antony. 2012. Program
Scalability Analysis for HPC Cloud: Applying Amdahl’s Law to NAS Benchmarks.
In SC12. 1215–1225. https://doi.org/10.1109/SC.Companion.2012.147

[15] The Standard Performance Evaluation Corporation (SPEC). [n. d.]. SPECMPI 2007
Benchmark Suite Documentation. https://www.spec.org/auto/mpi2007/Docs.

[16] Guohui Wang and T. S. Eugene Ng. [n. d.]. The Impact of Virtualization on
Network Performance of Amazon EC2 Data Center. In INFOCOM’10.

[17] Yong Wang. 2012. GaussâĂŞNewton method. Wiley Interdisciplinary Reviews:
Computational Statistics 4, 4 (7 2012), 415–420. https://doi.org/10.1002/wics.1202

[18] Y. Zhai, M. Liu, J. Zhai, X. Ma, and W. Chen. 2011. Cloud versus in-house cluster:
Evaluating Amazon cluster compute instances for running MPI applications. In
SC11. 1–10.

https://doi.org/10.1145/1375527.1375580
https://doi.org/10.1145/1375527.1375580
https://doi.org/10.1145/2831129.2831134
https://www.nas.nasa.gov/publications/npb.html
https://doi.org/10.1145/2287076.2287093
https://doi.org/10.1109/IPDPS.2010.5470418
https://doi.org/10.1109/IPDPS.2010.5470418
https://doi.org/10.1109/MC.2015.351
https://doi.org/10.1109/MC.2015.351
https://doi.org/10.1145/1807128.1807145
https://doi.org/10.1145/322186.322195
https://doi.org/10.1145/322186.322195
https://doi.org/10.1109/CGC.2013.22
https://doi.org/10.1109/CGC.2013.22
https://doi.org/10.1109/SC.Companion.2012.147
https://www.spec.org/auto/mpi2007/Docs
https://doi.org/10.1002/wics.1202

	Abstract
	1 Introduction
	2 Related Work
	3 Performance Model Overview
	3.1 Workload modelling
	3.2 Queueing Network and process life cycle
	3.3 Service time calculation
	3.4 Visit ratio calculations
	3.5 Job response time calculations

	4 Proposed System Design
	5 Experiments, Results and Analysis
	6 Conclusion and Future Work
	References

