

Firing order

Firing order:

> The firing order is the sequence of power delivery of each cylinder in a multi-cylinder reciprocating engine.

This is achieved by sparking of the spark plugs in a gasoline engine in the correct order.
Or by the sequence of fuel injection in a diesel engine.

➢ When designing an engine, choosing an appropriate firing order is critical to minimizing vibration and achieving smooth running, for long engine fatigue life and user comfort, and heavily influences crankshaft design.

ماحوظة: عند ترتيب الاسطوانات للاحتراق يجب عدم جعل ترتيب الحريق بالتتابع لترتيب الاسطوانات فى المحرك و ذلك: •ليتم توزع الحراره على اجزاء المحرك كلها ولا تذداد فى جزء عن الاخر. •ليتم توزيع الضغط فى المحرك على عمود المرفق فلا يؤدى الى احداث اهتزاز كبير فى المحرك. **Engine Terminology**

In case of 4 cylinder engine:

the four crankpins are in one plane, 180° opposed. Since two pistons each are at the extreme position, the inline design permits following firing orders: 1-3-2-4 or 1-3-4-2

firing order						
l. cylinder	work	exhaust	intake	compression		
2. cylinder	intake	compression	work	exhaust		
3. cylinder	compression	work	exhaust	intake		
4. cylinder	exhaust	intake	compression	work		
half a revolution of crank-shaft						

Engine Terminology

In case of 6 cylinder engine:

the crankpins are in one plane, 120° apart. The inline design permits following firing orders: 1-5-3-6-2-4 or 1-4-2-6-3-5

Comparison of SI and CI Engines:

NO	Description	SI Engine	CI Engine
1	Basic cycle	Operated on Otto cycle.	Operated on Diesel cycle
2	Eucl Lisod	Gasoline fuel, highly volatile fuel and self	Diesel, on- volatile, lower self ignition
2	Fuel Osed	ignition temperature	temp.
		A gaseous mixture of fuel and air is introduced	Fuel is injected inside the cylinder at high
3	Induction of fuel	during suction stroke. Carburetor or injector	pressure near the end of compression
		are necessary	stroke
			by fuel pump and injector
4	Load control	Quantity control by throttle	Quality control
		Requires an ignition system with spark plug in	The injected fuel ignited due to the high
5	Ignition	the combustion chamber.	pressure and temp. of air at the end of
			compression stroke.
		Operating at range of 6-11. Upper is limited by	Operating at range of 12-24.Upper limit is
6	Compression ratio	detonation	limited by weight increase of the engine
7	Thermal efficiency	Lower due to the lower comp. ratio	Higher due to the comp. ratio
		Lighter than Diesel. Due to lower comp. ratio	Heavier than Petrol Because it has high
		and lower may press the cylinder dimension	comp ratio and higher may pressure so
8	Weight	and weight he small	that the cylinder thickness he high and
	_		heavier for the same nower
9	Air/Fuel ratio	10:1to 20:1	18:1to 100:1or more according to the load
			on the engine
		Up to 6000r.p.m or more	Low speed 400r.p.m,medium 400-
10	Operating speed		1200r.p.m,high speed 1200 to 3500r.p.m
			or more
11	Weight per unit power	Low (0.5to 4.5kg/kW).	High (3.3to13.5kg/kW).
		lich due to the lower the much offic	llich due te biek thermal offic
12	Exhaust gas temperature.	High due to the lower thermal effic.	High due to high thermal effic.
			Deiluseu la semestiva, hasunu seren seriel
	lless	Small passenger cars, scooters, motor cycles,	Railway locomotive, neavy commercial
13	USES	smail aircraits, motor poats	roau venicies, snips motor boats, power
0.			generation.

Comparison Four Stroke and Two Stroke Cycle Engines:

No	Criteria of comparison	2- stroke engine	4- stroke engine
1	Power Stroke	One working stroke in each cylinder per	One working stroke in each cylinder per
		revolution of the crankshaft	two revolution of the crankshaft
2		Thermal efficiency lower, part load	Thermal efficiency higher, part load
	Thermal	efficiency lesser than four stroke cycle	efficiency better than two stroke cycle
	efficiency	engine. In two stroke engines some fuel is	engine
		exhausted during scavenging	
3	Weight and size	Lighter and compact for the same power	Heaver and larger
4	Volumetric	Volumetric efficiency less due to lesser	Volumetric efficiency more due to greater
	efficiency	time of induction	time of induction
5	Flywheel size	Smaller	Larger
6	Turning	More uniform turning moment and hence	Turning moment is not uniform and
	moment	lighter flywheel is needed	hence heavier flywheel is needed
7	Mechanical	More due to lesser moving parts	Lesser
	efficiency		
8	Construction	Simpler and easy to manufacture	More complicated due to valves and
			valves mechanism
9	Scavenging	Required and done by fresh charge	More efficient
10	Fuel	More fuel consumption for the same	Less for the same power
	consumption	power	
11	Cooling and	Greater cooling and lubrication .Great	Lesser cooling and lubrication. Lesser
	lubrication	rate of wear and tear	rate of wear and tear
12		Used where cost and weight low. Scooters	Cars, buses, trucks, tractors, industrial
	Applications	motors cycles lawn movers. Large sizes	engines, aero plane, power generation
		diesel engine	