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• Lecture aims:

• Understand the Block reduction techniques 

• Identify the transfer function
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Component Block Diagram
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Component Block Diagram



• It represents the mathematical relationships between the elements of  the system.

• The transfer function of  each component is placed in box, and the input-output 
relationships between components are indicated by lines and arrows.
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Component Block Diagram



• We can solve the equations by graphical simplification, which is often 
easier and more informative than algebraic manipulation, even though the 
methods are in every way equivalent. 

• The interconnections of  blocks include summing points, where any 
number of  signals may be added together.
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Component Block Diagram



• Blocks in series: • Blocks in parallel with their 

outputs added:
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Block Diagram Reduction Technique 



Combining blocks in cascade
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• Single-loop negative feedback
• Transfer function
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Two blocks are connected in a feedback 
arrangement so that each feeds into the other.
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Block Diagram Reduction Technique 



• Proof:

x
GG

G
y

21

1

1
21

1

1 GG

G



G1
x y

G2

-

+

b

e

x y

x
GG

exeGG

eGGxe

x
GG

G
yeGyyGbbxe

21

21

12

21

1
12

1

1
)1(

1
,,










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Block Diagram Reduction Technique 
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Block Diagram Reduction Technique 
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Block Diagram Reduction Technique 
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Example
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Block Diagram Reduction Technique 
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Example 2: Find TF from U to Y: 

• No pure series/parallel/feedback

• Needs to move a block, but which one?

Key: move one block to create pure series or parallel or feedback!

So move                either left or right.
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Can use superposition:

First set D=0, find Y due to R

Then set R=0, find Y due to D

Finally, add the two component to get the overall Y

Example 
Block Diagram Reduction Technique 
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First set D=0, find Y due to R

Block Diagram Reduction Technique 
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Then set R=0, find Y due to D

Block Diagram Reduction Technique 



Finally, add the two component to get the overall Y
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Modeling of  Motors



Mathematical Modeling 

The torque Tm of the motor is proportional to the current ia

The equations of the Ward–Leonard layout are as follows . The Kirchhoff’s law of voltages of 
the excitation field of the generator G is



Mathematical Modeling 

The equations of the Ward–Leonard layout are as follows . The Kirchhoff’s law of voltages of 
the excitation field of the generator G is

where use was made of the relation

The tachometer equation

the amplifier equation 

𝑣𝑓 = 𝐾𝑎𝑣𝑒

where Jm *= Jm + N2JL and Bm * =Bm + N2 BL, where N = N1/N2. 

Here, Jm is the moment of inertia and Bm the viscosity 
coefficient of the motor: likewise, for JL and BL of the load. 



Mathematical Modeling 

The mathematical model of the Ward–Leonard layout are as follows . 

Ω𝑦(𝑠)

𝑣𝑒(𝑠)
=



The state variables of  a dynamic system

 



The general form of  a dynamic system

 



State Space Equations

• State equations is a description which relates the following 

four elements: input, system, state variables, and output

Matrix A has dimensions nxn and it is called the 
system matrix, having the general form

Matrix B has dimensions nxm and it is called the input matrix, having the general 
form
Matrix C has dimensions pxn and it is called the 
output matrix, having the general form

Matrix D has dimensions pxm and it is called the feedforward matrix, having the 
general form



State Space Equations
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• The general form of  a dynamic system

The concept of  a set of  state variables that represent a dynamic system can be illustrated in terms of  
the spring-mass-damper system. A set of  state variables sufficient to describe this system includes the
position and the velocity of  the mass.

• We will define a set of  state variables as (x1, x2), where

To write Equation of  motion in terms of  the state variables, we substitute the state variables as 
already defined and obtain

Therefore, we can write the equations that describe the behavior of  the spring-mass damper system as 
the set of  two first-order differential equations

State Space representation 



State Space representation 

• State space matrix
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• Transfer from time domain to frequency domain: 

• Transfer function

State Space representation 
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Model Examples




