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Automatic Control
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* Lecture aims:
* Understand the Block reduction techniques

* Identify the transfer function




Mathematical Modeling
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Component Block Diagram
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Component Block Diagram

Controlled

Reference Actuating Feedforward variable i :
input signal elements (output signal) C(s) Output signal (controlled variable)

. B(s) Feedback signal = H(s)C(s)

RG) E(s) > G(s) P C(s) > E(s) Actuating siinal (error) = [R(s) — B(s)]

e(?) c(?) G(s) Forward path transfer function or

open-loop transfer function = C(s)/E(s)

M(s) Closed-loop transfer function = C(s)/R(s) = G(s)/[1 + G(s)H(s)]
H(s) Feedback path transfer function

Feedback H(s) G(s)H(s) Loop gain

E(s) 1

Feedback elements — = . ion —~+
RG) Error-response transfer function T+ GOH®)

R(s) Reference input

signal




Component Block Diagram

* It represents the mathematical relationships between the elements of the system.
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U,(S)G,(s) =Y,(s)

* The transfer function of each component is placed in box, and the input-output
relationships between components are indicated by lines and arrows.




Component Block Diagram

* We can solve the equations by graphical simplification, which 1s often
easier and more informative than algebraic manipulation, even though the
methods are in every way equivalent.

* The interconnections of blocks include summing points, where any
number of signals may be added together.




Block Diagram Reduction Technique

* Blocks in series: * Blocks in parallel with their
outputs added:
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Combining blocks in cascade




Block Diagram Reduction Technique

* Single-I negafive feedback S
SR U * Transfer function

G 1E vy Yi(s) . G
R(s) 1+G,G,

(ry |
L& 2 U,

Two blocks are connected in a feedback
arrangement so that each feeds into the other.




Block Diagram Reduction Technique

* Proof:
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Block Diagram Reduction Technique




Block Diagram Reduction Technique
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Block Diagram Reduction Technique
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TABLE 3.4.1 Some of the Block Diagram Reduction Manipulations

Original Block Diagram

Manipulation

Modified Block Diagram

Gy

G,

C

3

Cascaded elements

R

—_—

Addition or subtraction
(eliminating auxiliary
forward path)

Shifting of pickoff
point ahead of block

Shifting of pickoff
point behind block

Shifting summing
point ahead of block

Shifting summing
point behind block

Removing H from
feedback path

Eliminating
feedback path




Block Diagram Reduction Technique
Example
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Block Diagram Reduction Technique
Example 2: Find TF from U to Y:

* No pure series/parallel/feedback

* Needs to move a block, but which one?

Key: move onf(%lock to create pure series or parallel or feedback!

So move either left or right.

s(s+20)
U +

100 + S+1
Q_ ? S+2




10

N

s(s+20)

10(s+1)
s(s+2)(s+20)

\ 10(s+1)
s(s+2)(s+20)+10(s+1)




Block Diagram Reduction Technique

Example

D(s)

Controller

R(s) E(s)

+

Gy

Can use superposition:
First set D=0, find Y due to R
Then set R=0, find Y due to D

Finally, add the two component to get the overall Y

Output Sensor

H, |4




Block Diagram Reduction Technique

First set D=0, find Y due to R

R(s) : ) G,
_|_

Y= opd
1—I—G1G2H1
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Gy

Y(s)
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Block Diagram Reduction Technique

D(s)

Then set R=0, find Y due to D

Yz (S) = GZ
1+ G,G,H,

(=D(s))




Block Diagram Reduction Technique

Finally, add the two component to get the overall Y
D(s)

Controller

E(s) G,

+

Output Sensor

H, |«

Y (s) = 5.5, R(s)

- =——D(s)
1+ G,G,H, 1+ G,G,H,




Modeling of Motors
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Mathematical Modeling

The equations of the Ward—Leonard layout are as follows . The Kirchhoff’s law of voltages of
the excitation flgl_d of the generator G is Gears
. I
Uy = REI'{ + L[d—:
The voltage v, of the generator G is proportional to the current i, i.e.,

Ug = Kgfr

The voltage v, of the motor M 1s proportional to the angular velocity w,,, 1.e.,
Uy = Ky, ’ Tachome

The differential equation for the current i, 1s

di
R, + Ld—*lr = v, = Uy = Kyip — Kooy,
The torque T.of the motor is proportional to the current i.

Tm = Kmfa




Mathematical Modeling

The equations of the Ward—Leonard layout are as follows . The Kirchhoff’s law of voltages of
the excitation field of the generator G is
The rotational motion of the rotor i1s described by Gears Load

d
J:n?'k B:nmm - llifrn!:al

where Jn*= Jn+ N2J.and B.* =B.+ N2 B, where N = N./N..
Here, J. is the moment of inertia and B~ the viscosity
coefficient of the motor: likewise, for J.and B. of the load.

where use was made of the relation
i, = Newy,.

The tachometer equation
v, = Kim,

the amplifier equation




Mathematical Modeling

The mathematical model of the Ward—-Leonard layout are as follows .

Q(s) K KN
Vils)  (Les + Re)[(Lys + Ry (Jns + By) + K K]
Q,(s) KK K,N

1.(5)  (Lgs + ROILys + R)(Jias + Bo) + K Ky

12(8) V(5] R A KN
e ——- I o E_n
_Q {L};S"‘ H.r.J{L,,S+H,,j{“'r:.;E+'H:u'i-}-Km!:ﬁ
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The state variables of a dynamic system




The general form of a dynamic system

Initial
conditions

> Dynamic system
state x(r)




State Space Equations

* State equations is a description which relates the following (1) = Ax(r) + Bu(z)

four elements: input, system, state variables, and output ¥(6) = Cx(t) + Du1)

& . br NN dayy dyr =+ Ay
Matrix A has dimensions nxn and it is called the @y @y - an
system matrix, having the general form I :

7/ iy ror gy
Matrix B has dimensions nxm and it is called the input matrix, having the general
form i €12 cc €l
Matrix C has dimensions pxn and it is called the B [
output matrix, having the general form -

€ €2 -+ Cap

Cpl ‘:';ﬂ “or Cpp

Matrix D has dimensions pxm and it is called the feedforward matrix, having the
general form




State Space Equations




State Space representation

|

* The general form of a dynamic system

The concept of a set of state variables that represent a dynamic system can be illustrated in terms of
the spring-mass-damper system. A set of state variables sufficient to describe this system includes the

position and the velocity of the mass.

* We will define a set of state variables as (x7, x2), where

d &
x,(1) = y(r) and x,(t) = ﬁ%ﬁﬂ f = X2

To write Equation of motion in terms of the state variables, we substitute the state variables as
already defined and obtain dx d?y

| Wall
|friction

b

= —\/\/\/\7/_\/\/\/‘—

l_\‘(l) u({)l

dy
M— + bx, + kxi = u(t) M—‘f'b‘—'f'ky—ﬂ(f)

dt dt?
Therefore, we can write the equations that describe the behavior of the spring-mass damper system as
the set of two first-order differential equations —b X |

HI; = Exl + Eu

dt




State Space representation

* State space matrix ——
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State Space representation

Transfer from time domain to frequency domain:

[ 1[I
Ryiy(r) + EL i(r)yde = EL (N dr = (1)

1 1
[R] + a} f] {5‘} - E.’g{ﬂ = F{‘i]

L[, di. 1] .

| 1
— af] (5) + [Rz 4+ L'?+F]]1|[-ﬂ =0

5

* Transfer function
L(s) Cs

) ot

V(s)  (RiCs+ ILCS + RyCs+ 1) =1 ~ RLCS + (R, RC + L)s+ R, + R,




State Space representation

e(t) Ry b () -

di, _
Ve () - L, T Ryl, =¢

.
dt




State Space representation

= Ax+Bu —X(0)=Ax(s)+Bu(s
y =CX + Y (s)=C x(s)+Du(s)

GE)=C(s1-» "B - e




State Space representation

X, =— 9%, — X, +2U . -
u I S - 1
—A)= (S+5)(S+1)+3
-3 S+1 T acocal

|

S+1 -1
3




Model Examples

Quadrocopter Pole Acrobatics
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