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ABSTRACT 

 
This  thesis  considers  the  prediction  of  turbulence  in  complex  flows  using       

Reynolds Stress Model (RSM). The time evolution of the flow in the square ducts is simulated, 

and the turbulence-driven secondary flow are predicted in the case of the square duct. Results are 

compared to both experimental and CFD data. The mean secondary flow structures  in  the  

square duct indicate the existence of strong, counter rotating vortex pairs, which  are 

symmetrically placed  around the four  outer  corners  of  the inner square duct .The  additive 

multigrid method is used  to accelerate the convergence of the pressure Poisson equation and the 

appropriateness of this method to deal with the high wave number components in turbulence is 

considered. Parallel computing techniques are applied to assist in the solution of the Navier-

Stokes equations. 

 

This study is carried out using computational fluid dynamics (CFD) simulation 

techniques as embedded in the commercially available CFD code (FLUENT 6.2). The CFD 

modelling techniques solved the continuity, momentum and energy conservation equations. 

  

Throughout the investigations, numerical validation is carried out by way of comparisons 

of numerical results obtained from FLUENT to results reported in the work of other researcher. 

Good agreement is found among both predictions. 
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CHAPTER ONE 

Introduction 

1.1 The Problem Considered  

 The Majority of flows which occur in nature or in engineering practice is turbulent and, 

more often than not, is three dimensional. One example is the turbulent flow in a duct of non-

circular cross-section which is characterized by the existence of secondary motions in the plane 

normal to the streamwise direction, a feature that is absent from both Laminar and two 

dimensional flow.  

 The turbulence structure of internal flows within circular pipes or non-circular ducts can 

be altered considerably by the occurrence of secondary flows [1-21]. These secondary flows lead 

to friction losses and can shift the location of maximum momentum transport from the pipe or 

duct centerline two effects that can have profound consequences for engineering design. 

Consequently, there is the need for turbulence models that can reliably predict the secondary 

flows that occur in engineering applications which include turbomachinery impellers and blade 

passages, aircraft intakes, and pipe or duct cooling systems.  

 There are four fundamental types of secondary flows: (1) turbulence-driven secondary 

flows in straight ducts of non-circular cross-section, (2) turbulent secondary flows in curved 

circular pipes, (3) turbulent secondary flows in curved ducts of non-circular cross-section and (4) 

turbulent secondary flows in rotating ducts of noncircular cross-section. These flows are selected 

since they involve secondary flows generated by a combination of the effects of normal 

Reynolds stress differences, streamline curvature and body forces arising from a system rotation. 

Thus, a relatively broad basis for the evaluation of models can be provided. The ability of two-

equation models and second-order closures to predict these types of turbulent secondary flows 

will be evaluated in a systematic manner. A variety of illustrative calculations of secondary 

flows will be presented along with an assessment of the progress that has been made in the 

analysis of these flows. 

 The flow in a streamwise corner is considered. It is a three-dimensional turbulent flow 

bounded by two walls, which may be straight or curved. This type of flow can be external as well 



as internal and occurs in many practical applications. The flow around blade-hub junctions and 

wingbody junctions are examples of external streamwise corner flow. The flow in long ducts and 

channels fall under the category of internal streamwise corner flows. All of these flows are 

characterized by the development or decay of streamwise vorticity which alters the primary flow 

field.  

 Alternatively, there exists a secondary flow which is superimposed on the primary 

streamwise flow. Secondary motion in internal flows is important in a variety of engineering 

applications. For example, the pressure drop in developing or fully-developed flow in duct bends 

affects the pumping power needed. The heat transfer is enhanced by the secondary motions in the 

cooling coils of heat exchangers. The flow in aircraft-engine intakes and heat transfer in 

turbomachinery components are also affected by secondary motion. River meanders and 

variations in bend topology are induced by secondary motion. In blood flow, the length required 

for fully-developed flow after a bifurcation and the site of extrema in the wall shear stress are 

important in the understanding of the buildup of cholesterol on the vessel walls. In external flows, 

secondary motion arises in three-dimensional boundary layers and in boundary regions such as 

wing tips and wing-body junctions. While conventional boundary-layer theory accounts for the 

former, it excludes boundary regions where the surface curvature is either discontinuous, as in 

corners between two walls, or not small compared with boundary-layer thickness, as in the flow 

around wing tips and in corners with fillets. The flow in a corner is of special interest since it 

provides the boundary conditions for the boundary-layer flow in regions remote from the corner. 

Practical applications arise in wingfuselage junctions in aerodynamics, hull-appendage junctions 

in ship hydrodynamics, and blade-hub junctions in turbomachinery. The formation and decay of 

the longitudinal vortices in corners, and the possibilities of corner-flow separation, are 

phenomena of particular interest in these applications.  

 Prandtl (1952) classified secondary flows according to the mechanism which generates 

them. Pressure-driven secondary flow, or secondary flow of the first kind, is that which results 

from the radial pressure gradients which balance the centrifugal acceleration due to the curvature 

of the streamlines. Such secondary flows arise in curved ducts and channels, wing-body 

junctions as well as in turbomachinery. The secondary flow in three-dimensional laminar and 

turbulent boundary layers is primarily of this type. The magnitude of the secondary flow thus 



depends on the curvature of the mean streamlines. Another type of secondary flow, called 

secondary flow of the second kind, occurs only in turbulent flow and is generated by the 

gradients of the Reynolds stresses. This is also called shear-driven or turbulence-driven 

secondary flow. In straight noncircular ducts and channels, the secondary-flow velocities due to 

this mechanism are usually small, of the order of 2 to 3 percent of the average velocity. In 

turbulent flow in curved ducts and channels, both types of secondary motion is present but, if the 

curvature is large, secondary motion of the first kind becomes predominant. 

 In contrast to Prandtl’s second kind of secondary flow, which is present in turbulent non-

circular duct flows, are often described as “turbulence-driven secondary flow”. Although such 

motion is two order of magnitude smaller than the mean flow velocity it may have important 

consequence. For example, it causes the contours of main velocity to bulge towards the corners 

and produces an overall increase in the boundary sheer stress. Effects such as these are important 

in many flows of industrial interest. Examples are flows in turbomachinery, heat exchangers, 

nuclear reactors, ventilation and  air conditioning systems and open channels. All such flows are 

companied by turbulence driven secondary flow motions in the plane perpendicular to the main 

flow direction. One of these applications, namely the flows in turbomachinery, the flow is more 

complex due to the interaction of turbulence field with body forces arising from rotation of duct. 

Body forces act both directly on the mean flow motion and on the turbulence fluctuations.  

 The flow in the above mentioned situation is too complicated to investigate 

experimentally at a reasonable expense. Complex equipment’s are needed to perform the 

experiments which can be very time consuming. The alternative is to try to develop a numerical 

model to simulate the flow. The present study describes the application of a finite difference 

solution procedures to the differential equations that govern the flow. The study is restricted to 

steady, fully developed, flow of an incompressible Newtonian fluid. Calculations have been 

made for stationary ducts, while recommend to make the calculations based on rotating ducts as 

well. Furthermore, the study covers ducts with one-to-one aspect ratio (square duct). In all 

conditions the predicted results obtained from this work have been compared with available 

experimental and computational data. 

 



 

1.2 Calculation Method of Turbulence Flows:  

 It is generally accepted that Navier-Stokes equations together with the continuity 

equation comprise a closed set of equations the solution of which provides a valid description of 

any laminar or turbulent flow. The continuity equation for a constant density steady flow can be 

written as: 

  ̂ 

   
   1.1 

 

Where  ̂  is the instantaneous velocity in the    direction. The Navier-Stokes equations for the 

steady flow of a Newtonian fluid of viscosity   and in the absence of body forces take the form: 

  
  ̂  ̂ 

   
    

  ̂

   
 

  ̂  

   
 1.2 

 

For ease of calculations, the statistical average of  ̂ and  ̂ with respect to time can be written as 

the following: 

       
   

∫  ̂    
    

 

 1.3a 

      
   

∫  ̂   
    

 

 1.3b 

 

Where U & P are the average values of  ̂ and  ̂ and    represents a time interval greater than the 

time of slowest fluctuations. The random fluctuations in U and P (u and p) are defined as: 

    ̂      1.4a 

    ̂     1.4b 

 

Substitution for   ̂ and  ̂ in equations 1.1 and 1.2 with the relation 1.4 and time averaging yields: 

   

   
   1.5 



  
     

   
    

  

   
 

    

   
  

 (        ̅̅ ̅̅ ̅)

   
 1.6 

Because equation 1.2 is nonlinear the averaging process has led to the appearance of 

unknowned second order correlations (        ̅̅ ̅̅ ̅) in equation 1.6. These correlations represent 

the transport of momentum due to the turbulent motion and are known as “Reynolds stress”. The 

appearance of these extra unkowns results in a non closed system of equations. In fact, the 

determination of Reynolds stress is the main problem in claculating turbulent flows. Althogh 

exact transport equations can be derived for the Reynolds stress, these equations contain 

turbulent  correlations of the next higher order. This is known as the “closure problem”. Therfore, 

closure of the equations cannot be obtained by restoring to equations for correlations of higher 

and higher order. Instead, a turbulence model must be introduced. 

 In broad terms, the turbulence model is used to approximate the Reynolds stress in terms 

of known quantities. In sophisticated models, the Reynolds stress are obtained from the solution 

of modelled diffrential equations which describs the rate of tranport, generation and destuction of 

each component of stress tensor. These models are often reffered to as “second-order closuer 

models”. Examples of such schemes include the Reynolds stress model (RSM) and algebra stress 

model (ASM). 

 

1.3 Objectives of the Present Study:  

 The present study is primarily motivated by the need for a generally practical prediction 

procedure for turbulent flow in ducts of non-circular cross-sections. From the points considered 

in the previous section it is clear that the second-order closure models seem to be limited in use 

in practical engineering.  

 An alternative approach of practical aspect has been treated in order to allow the RSM 

turbulence model to predict the turbulence driven secondary flow motions. The purpose of the 

present work is to add to knowledge in this field. However, the main objectives of present study 

are as follows: 



1) To investigate the capability of K- , RSM & LES models, whether correctly predict the 

turbulence-driven secondary motion in straight non-circular ducts. 

2) To predict using RSM model the distribution of boundary shear stress and turbulence 

structure for fully developed flows in a square duct. 

 

1.4 Outline of the thesis: 

The rest chapters of present thesis are arranged as follows:  

 In chapter 2, a brief review is made of previous excremental and theatrical 

investigations of turbulent flow in non-circular ducts. 

 In chapter 3, the partial differential equations which govern the flow 

considered here are derived. These equations are then transformed into 

their finite difference equivalents and the method used for their solution is 

presented. 

 In chapter 4, the turbulence model is discussed and the mathematical 

details of present RSM turbulence model. 

 In chapter 5, detailed discussions on the results obtained for the 

turbulence-driven secondary motion in stationary non-circular square 

ducts. The chapter also illustrates the comparisons with other experimental 

work. 

 In chapter 6, a summary of the main achievements of the present study and 

recommendations for future research. 

  



CHAPTER FIVE 

Results & Discussions 

5.1 Introduction: 

 In the present chapter, the validation of solving the flow in by using Reynolds Stress 

Model (RSM), as a Comparisons between the turbulence models (RSM) and the experimental 

work of Melling and Whitelaw (1976) are presented for a Reynolds number of Re = 42000.  

 Calculations for fully turbulent flow have been performed for square duct (B/H=1). The 

emphasis throughout has been on the prediction area for which detailed experimental as 

described in this chapter, for the sake of comparison. 

 This chapter comprises three main sections. Information on the duct description and grid 

used for numerical simulation by the turbulence model (RSM) are given in section 5.2. Details 

for the used flowing fluid are provided per section 5.3. However, detailed boundary conditions 

have been illustrated per section 5.4. The major parts of the study deal with the comparison 

between the experimental work of Melling Whitelaw (1976) and computational fluid dynamics 

results considering turbulence model (RSM), all results for main flow as well as the turbulence 

structures are presented and discussed in section 5.5. Finally, a brief summary of the 

achievement of this chapter is contained in section 5.6. 

5.2 Duct and grid description: 

 The flow domain of interest in the present computational study is illustrated in Figure 5.1 , 

the figure presents square horizontal duct, with cross-sectional area of (30 cm x 30 cm), and 

length of (450 cm). Also, the figure represents the x-y cross-sectional plane of the duct, the main 

flow direction being normal to this plane (in the z direction).  

 The grids used by the wall function (30x30) are shown in Figure 2.  with “enhanced wall 

treatment is used for the near-wall treatment”. This is ascertaining that, turbulence quantities in 

turbulent flows are properly resolved with high accuracy.  



 Hence, for the current study, sufficiently fine meshes are used near to duct wall and duct 

corners with more cells & nodes are generated in duct corners where the secondary flow is 

predicted, so that more accurate results can be generated beside the corners. 

Grid size/details for the studied case are:   

 Total Number of Cells: 1,265,625   

 Total Number of Faces: 3,819,375   

 Total Number of Nodes: 1,305,376             

 Furthermore, Owing to the symmetry of the ducts about its two center planes in 

stationary flow conditions, and to obtain more accurate results, the study have been emphasized 

on one quarter of the duct only (the top-right quarter), with considering “Periodic Boundaries” 

that allows to generate more nodes and finer mish for fluid domain, while the results for 

complete geometry can be viewed by mirroring or repeating the domain. The boundaries of the 

calculation domain in such a case are mathematically defined as follows: the top & right 

boundaries are the stationary half walls of the ducts at which all the velocities are zero, while the 

bottom & left boundaries are the symmetry planes across which the flux of any variable is zero.   

 



 

FIG. (5.1): DUCT 30 x 30 x 450 cm 

 The secondary flow streamlines are also shown in (Figure 5.2). The flow direction occurs 

from the center to the corners and returns to the center along the walls, forming eight vortexes. It 

is noticed that Melling and Whitelaw (1976) don’t show the secondary flow streamlines, only a 

vectors distribution of secondary velocity, without symmetry, making comparisons difficult. The 

models predict streamlines very similar. 

 

FIG. (5.2): GRID 



5.3 Flowing fluid: 

 To simplify the current study, “Air” is considered as the flowing fluid through the duct. 

Also, standard physical properties are considered for the current study, these standard physical 

conditions are provided per FLUENT data base, below (figure 5.3) shows these physical 

properties.  

 

FIG. (5.3): Air physical properties 

 

5.4 Boundary conditions: 

 Boundary conditions specify the flow and thermal variables on the boundaries of the 

physical model subjected to the study. They are, therefore, a critical component of FLUENT 

simulations study cases.  

 



 

 As illustrated in section 5.2, two types of boundary conditions (i.e. constrains on the 

dependent variables at the four boundaries of cross-sectional planes of all value of z axis) are 

encountered in the present thesis: stationary duct walls and planes of symmetry. Initially, all 

component of velocity are zero. For the near-wall region, special practices (such as enhanced 

wall treatment) are needed for the reasons discussed below. In central region of the flow, the 

gradient of flow properties is usually not very steep; a moderately fine grid yields reasonable 

accurate solutions. Close to the walls, the variable gradients become much steeper, thus an 

extremely fine grid is necessary for their accurate computation. 

The boundary types available in FLUENT are classified as follows: 

- Flow inlet and exit boundaries: pressure inlet, velocity inlet, mass flow inlet, inlet vent, 

intake fan, pressure outlet, outlet flow, outlet vent, and exhaust fan. 

- Wall, repeating, and pole boundaries: wall, symmetry, periodic, axis 

- Internal cell zones: fluid, solid (porous is a type of fluid zone) 

- Internal face boundaries: fan, radiator, porous jump, wall, interior and it is important that 

they are specified appropriately 

Here under a detailed illustration for all boundaries conditions have been considered for 

computation by using turbulence model (RSM): 

 

5.4.1 Inlet Boundary Conditions: 

 Inlet Velocity boundary condition is the main boundary conditions used for the present 

study, Velocity magnitude is 7 m/sec in direction of z-axis normal to the boundary. Also, 

turbulence specifications used are shown in below screen shot (figure 5.4), with turbulence 

intensity (2%) and hydraulic diameter of (0.3m). More importantly, all computations for flowing 

fluid properties by turbulence model (RSM) have be initiated from inlet velocity boundary 

conditions. 



 

FIG. (5.4): Inlet boundary conditions  

5.4.2 Outlet Boundary Conditions: 

For outlet boundary conditions, we have considered atmospheric pressure at duct outlet. Below 

screen shot (figure 5.5) reflects all considerations for this boundary condition.  

 

FIG. (5.5): Outlet boundary conditions 

 



xcvi 

 

5.4.3 Walls Boundary Conditions: 

 As illustrated earlier, due to planes of symmetry we have considered wall boundary 

conditions for the top & right edges. Below screen shot (figure 5.6) reflects all consideration for 

Wall roughness, Wall motion (stationary), and shear conditions (no slip). 

 

 

FIG. (5.6): Walls boundary conditions 

5.4.4 Periodic Boundary Conditions: 

 As illustrated earlier, the bottom & left boundaries are periodic boundary conditions; 

hence we have considered Periodic boundary conditions for the bottom & left edges. Also, for 

displayed results, we have viewed the results for complete duct by repeating the studied domain 

(duct quarter) four times by rotating it with 90 Degrees about the z axis as shown in (figure 5.7).  
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FIG. (5.7): Periodic boundary conditions 

 

 

5.5 Results: 

5.5.1 Main Axial Velocity: 

 Mean axial velocities along the duct center-line are presented in figures 5.8 by 

considering three inlet velocities (V= 2 m/s, V= 7 m/s and V= 14 m/s) by using turbulence 

modeling RSM.  These figures show the axial velocity and turbulent kinetic energy fields, 

respectively, it was adimensionalized utilizing the maximum axial velocity value. It can be 

noticed that, due to the fact that the secondary flow is associated with the turbulence, the field of 

axial velocity is distorted. Due to the symmetry of the flow, the results are shown only for a 

quadrant of the square duct.  
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FIG. (5.8): Axial mean velocity contours W /Wmax , Experimental by Melling and Whitelaw [7] 

 The isovels plots obtained with present turbulence model RSM have been compared with 

the experimental data work of Melling and Whitelaw (1976), where eight contours of the 

primary velocities normalized with the maximum velocity (W /Wmax = 0.7, 0.8, 0.85, 0.875, 0.9, 

0.925, 0.95, and 0.875) are plotted. All models show little bulging of the contours towards the 

corners in comparison with the data measured by Melling and Whitelaw (1976). In survey on the 

development of turbulent flow in non-circular ducts, Kline (1981) found that the length required 

for full flow development may exceed 140 pip diameters and for certain inlet conditions, it was 

advised to be as low as 70 Dh. However, no definite conclusion can be proved. In view of the 

uncertainties about the fully developed conditions, the present model can be considered in fair 

agreement with experimental contours.  
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 As a result from figure 5.7 the mean velocity contours are bulging due the action of the 

secondary flow which acts to transport high momentum fluid away from the core. However, the 

reason for the difference between present model and experimental data lies in the predicted 

secondary motion as will be shown in the next section. 

 

5.5.2 Secondary flow streamlines: 

 Secondary flow streamlines at outlet flow cross-sectional area of the duct are presented in 

figures 5.9, the secondary flow velocity vectors are observed to be directed along each wall 

bisector towards the core region, and then deflected along with the diagonals towards the corners, 

forming eight shape vortexes.  

 

 It is noticed that Melling and Whitelaw (1976) don’t show the secondary flow 

streamlines, only a vectors distribution of secondary velocity, without symmetry, making 

comparisons difficult. The models predict streamlines very similar. Furthermore, below 

secondary flow streamlines have been colored by velocity magnitude, however, the maximum 

values of velocities in x and y directions, which occur on the diagonals near the corner, do not 

exceed 0.162 m/s taking into consideration that the maximum axial velocity at z direction 

velocity is 8.82 m/s. Hence, the max velocity of secondary flow does not exceed 2% of main 

axial velocity. 
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FIG. (5.9): Secondary Flow Streamlines – using (RSM) 

 The predicted distributions secondary velocity streamlines (normalized by Dh and the 

centerline velocity) in a square duct are compared for two values of inlet velocities, the first is 
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V= 2m/s and the second is V= 7m/s. the secondary flow streamlines are obviously reflected for 

V= 7 m/s.  

 

 Furthermore, for both figures, a pair of longitudinal vortices is produced, one vortex over 

the corner bisector is called “side vortex”, and the other vortex under the bisector is called 

“bottom-vortex”. In the square duct condition, as it is expected, the side-vortex and the bottom 

vortex are well symmetrical with each other in regard to bisector. The pattern of the bottom-

vortex is completely confined by the side wall and thus the effect of change in the duct aspect 

ratio small. On the other hand, the side-vortex is much affected by the aspect ratio: increase in 

the aspect ratio leads to a decrease in side-vortex and then tends to attain a constant at high 

aspect ratio. This bisector is well predicted by the present model. 

 

5.5.3 Turbulence Kinetic Energy: 

 Turbulence kinetic energy which can be considered as the scale of the turbulence 

intensity in the three dimensional flow investigated in the present thesis is plotted in figure 5.9 

normalized by the max velocity Wmax. It can be noticed that, due to the fact that the secondary 

flow is associated with the turbulence, the field of axial velocity is distorted. Due to the 

symmetry of the flow, the results are shown only for a quadrant of the square duct. The model 

that presents smallest deviations from the experimental data is the RSM, with inlet velocity v= 7 

m/s. 
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FIG. (5.10): Turbulent kinetic energy contours,          
        , Experimental by Melling 

and Whitelaw [7] 

 

5.5.4 Turbulent intensity contours: 

 Predicted turbulence quantities are displayed in figures 5.10, 5.11, and 5.12 for the square 

ducts, considering different inlet velocities (V= 2 m/s & V= 7 m/s). The results clearly show the 

capability of Turbulence model to correctly predict the shear stress distributions. The contour map of 

Reynolds normal stress in the x-direction      (sometimes referred as transverse turbulence intensity) 

shown in this figure. 
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FIG. (5.11) : Turbulent intensity contours  ́/     , Experimental by Melling and Whitelaw [7] 

 

FIG. (5.12) : Turbulent intensity contours  ́ ́/      
       , Experimental by Melling and 

Whitelaw [7] 
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FIG. (5.13): Turbulent intensity contours  ́ ́/      
       , Experimental by Melling and 

Whitelaw [7] 

 

5.6 Closure: 

 In this chapter, the results of calculations performed with the turbulence model RSM. The 

emphasis has been placed on the prediction of the turbulent flow situations investigated by 

experimental work. Hence, fully developed square duct has received the greatest attention. The 

numerical procedure, incorporating the present turbulence model has been applied successfully 

to the prediction of turbulence driven secondary motion in three dimensional flows. The 

capability of RSM turbulence model to correctly predict each motion has been confirmed. The 

secondary flow pattern has been predicted well, although its magnitude close to the wall are 

slightly overestimated in comparison with the experimental data. 

 The computed distributions of the mean axial velocity, turbulence energy and wall sheer 

stress found to be in very favorable agreement with the available experimental data.  

 However, the present results of RSM turbulence model represent a very appreciable 

improvement on the other turbulence models hitherto performed. 
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CHAPTER SIX 

Conclusion 

 The final chapter in this thesis is in two sections. The extent to which the objective s of 

this work, as outlined in section 1.3, have or have not been fulfilled is discussed in section 6.1. 

Suggestions for further work are presented in section 6.2 

6.1 Achievement of Objectives: 

 The first of the present objective was to investigate the capability of RSM turbulence 

model of predicting turbulence-driven secondary flows. The flow patterns are drawn in 

GAMBIT, specifying all boundaries conditions, and then establish the mesh for the flow pattern, 

with applying fine grid near to the wall, where secondary flow is predicted.  

 The K- , LES, and RSM turbulence models were then applied to predict the fully-

developed flow in a square duct at various Reynolds numbers. It was clear that only RSM 

turbulence model is capable of reproducing the turbulence anisotropy required to drive the 

secondary motion. The first objective was thus attained and the second objective, concerned with 

a detailed study of the mean-flow and turbulence structure in a square duct, was tackled next. 

Published experimental data for fully-developed flows in square ducts were used to test RSM 

turbulence model performance over two values of Reynolds numbers. Comparison were also 

made with experimental work carried out by Melling and Whitelaw (1976) that consider a 

Reynolds number of Re = 42000. 

 Overall, the RSM turbulence model produced results that are similar and in many cases 

better than other turbulence models such as The K-  and LES turbulence models. In particular, 

the expected distortion in main-velocity contours due to the secondary flow was well reproduced, 

and so was the shift in the location of wall shear stress away from the center planes and towards 

the corners. The turbulence model (RSM) also produced close agreement with turbulence data 

including the imbalance in normal stress generating the secondary flow. Hence, Objective two 

has clearly been attained. 

6.2 Recommendation for Future Work: 
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 This study has focused on flows in square ducts because those are better documented 

experimentally. However, several other cross-sections may be encountered in practice (such as 

rectangular with wide range of aspect ratios, triangular, and curved triangular that occur in rod 

bundles) where the effects of turbulence-driven flow are equally important. It is therefore 

recommended that the present study to be extended to such complex geometries. Specially, to 

apply the same turbulence model (RSM) for rectangular ducts with different aspect ratios in 

order to obtain a better indication of the effect of duct aspect ratio on the distribution of 

turbulence-driven secondary flow. 

 Further extension should include the prediction of heat transfer in non-circular ducts with 

aid of the present turbulence model.    

 Finally, it is recommended to complete the present study and use the turbulence model 

(RSM) to predict the secondary motion in a non-circular rotating ducts of varying aspect ratios.  
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