Heat Exchanger Chapter (4)

Goals:

By the end of today's lecture, you should be able to:

- \triangleright Learn how to deal with heat exchanger problems.
- \triangleright Learn how to design and select heat exchanger according to the application.

Chapter (4)

Heat Exchanger

What Are Heat Exchanger?

Heat exchangers are units designed to transfer heat from a hot flowing fluid to a cold flowing fluid.

Heat Exchanger

Classification of Heat Exchanger

 \triangleright There are many types of heat exchangers in use:

 \Box Concentric tube (double pipe)

- Counter-flow or parallel flow
- Mixed or unmixed cross flows

□ Shell-and-tube

❖ Parallel or cross flow

Q Compact

□ Concentric tube (double pipe)

- \triangleright Simplest configuration.
- \triangleright Superior performance associated with counter flow.

Heat Exchanger

□ Shell-and-tube

- **Baffles** are used to establish a cross-flow and to induce turbulent mixing of the shell-side fluid, both of which enhance convection and to support the tubes
- The number of tube and shell passes may be varied.

Heat Exchanger

Straight Tube Heat Exchanger

(One Pass Tube Side) Straight Tube Heat Exchanger (Two Pass Tube Side)

Heat Exchanger

Q Compact

- \triangleright Widely used to achieve large heat rates per unit volume, particularly when one or both fluids is a gas.
- \triangleright Characterized by large heat transfer surface areas per unit volume, small flow passages, and laminar flow.

(a) Fin-tube (flat tubes, continuous plate fins) **(b)** Fin-tube (circular tubes, continuous plate Fins **(c)** Fin-tube (circular tubes, circular fins) **(d)** Plate single pass) **(e)** Plate-fin (multipass)

Heat Exchanger

Heat Exchanger Temperature Profile

Axial temperature distribution in typical single pass heat transfer matrices

Axial temperature distribution in one shell pass, two tube pass heat exchanger

Method of Heat Exchanger Design Calculations

The Log Mean Temperature Difference (LMTD) Method

 \triangleright A form of Newton's Law of Cooling may be applied to heat exchangers by using a log-mean value of the temperature difference between the two fluids:

$$
q = UA \Delta T_m
$$

 \triangleright The temperature difference at each end of the exchanger is calculated and combined using the following equation to give the log mean temperature difference:

$$
\Delta T_{lm} = \frac{\Delta T_2 - \Delta T_1}{\ln \frac{\Delta T_2}{\Delta T_1}}
$$

The Log Mean Temperature Difference (LMTD) Method

Evaluation of depends on the heat exchanger type.

Parallel-flow:

$$
\Delta T_{lm} = LMTD = \frac{(T_{h,o} - T_{c,o}) - (T_{h,i} - T_{c,i})}{\ln[(T_{h,o} - T_{c,o})/(T_{h,i} - T_{c,i})]}
$$

Counter flow:

The Log Mean Temperature Difference (LMTD) Method

Cross-flow & Multi-pass (shell & tube)

$$
[\Delta T_{lm}]_{counterflow} = F [\Delta T_{lm}]_{crossflow}
$$

$$
\Delta T_{lm} = LMTD = F \frac{(T_{h,o} - T_{c,i}) - (T_{h,i} - T_{c,o})}{\ln[(T_{h,o} - T_{c,i})/(T_{h,i} - T_{c,o})]}
$$

F = correction factor

Heat Exchanger

The Log Mean Temperature Difference (LMTD) Method

F = correction factor

Heat Exchanger

The Log Mean Temperature Difference (LMTD) Method

F = correction factor

Heat Exchanger

The Log Mean Temperature Difference (LMTD) Method

F = correction factor

The Effectiveness, ε-NTU Method

- \triangleright When one or more temperature value for the streams at the inlet or outlet of the heat exchanger are **NOT** known, a trial and error procedure may be needed.
- \triangleright Instead, the method of number of transfer units (NTU) based on HEX effectiveness may be used.
- \triangleright The ε -NTU method is based on the fact that the inlet or exit temperature differences of a heat exchanger are a function of UA/C_c and C_c/C_h .
- \triangleright The HEX heat transfer equations may be written in dimensionless form resulting in some dimensionless groups.

NTU stands for "Number of Transfer Units"

The Effectiveness, ε-NTU Method

The HEX heat transfer equations may be written in dimensionless form resulting in some dimensionless groups.

Dimensionless groups:

- 1. Heat capacity rate ratio.
- 2. HEX heat transfer effectiveness.

The Effectiveness, ε-NTU Method

Heat Capacity Rate.

- \triangleright The heat capacity rate of a fluid stream represents the rate of heat transfer needed to change the temperature of the fluid stream by $1^{\circ}C$ as it flows through a heat exchanger
- \triangleright For calculations of heat exchangers, we often deal with the heat capacity rate of a fluid:

For hot fluid:
$$
C_h = \dot{m}_h C_{p,h}
$$

For cold fluid: $C_c = \dot{m}_c C_{p,c}$

The Effectiveness, ε-NTU Method

Heat Exchanger Effectiveness, ε

$$
\varepsilon = \frac{q_{act}}{q_{max}} \qquad 0 \le \varepsilon \le 1
$$

where the maximum possible heat transfer rate of a heat exchanger, q_{max} , occurs when we consider the maximum temperature difference, ΔT_{max} . The heat transfer rate is defined as:

$$
q_{\max} = C_{\min}(T_{h,i} - T_{c,i})
$$

Where:

$$
C_{min} = C_h, \text{ if } C_h < C_c
$$
\n
$$
C_{min} = C_c, \text{ if } C_h > C_c
$$

the actual heat transfer rate of an exchanger as

$$
q_{act} = \varepsilon C_{\min}(T_{h,i} - T_{c,i})
$$

Dr. Ismail Mahmoud Metwally El Semary 23 11/24/2015

Heat Exchanger

The Effectiveness, ε-NTU Method

The heat capacity ratio

The "Number of Transfer Units" (NTU) is a dimensionless group defined as:

Effectiveness, NTU Relationship

Effectiveness can also be expressed as a function of (NTU) where:

(A) Effectiveness for heat exchangers as a function of (NTU) (Mathematical Correlations)

Example – Concentric tube (double piped)

Parallel Flow:

$$
\varepsilon = \frac{1 - \exp(-NTU(1+C_r))}{1+C_r}
$$

Counter Flow:

$$
\varepsilon = \frac{1 - \exp(-NTU(1 - C_r))}{1 - C_r \cdot \exp(-NTU(1 - C_r))}, \ C_r < 1
$$

$$
\varepsilon = \frac{NTU}{1 + NTU}, \ C_r - 1
$$

where, Cr is the heat capacity ratio

Dr. Ismail Mahmoud Metwally El Semary 25 11/24/2015

Heat Exchanger

Effectiveness, NTU Relationship

Type of HEX	$\varepsilon(NTU,C^*)$	$N\mathsf{TU}(\varepsilon,\mathsf{C}^{\star})$
Counterflow	$\varepsilon = \frac{1 - \exp\left[-\left(1 - C^*\right) \text{NTU}\right]}{1 - C^*\exp\left[-\left(1 - C^*\right) \text{NTU}\right]}$	NTU = $\frac{1}{1 - C^*} \ln \left(\frac{1 - \varepsilon C}{1 - \varepsilon} \right)$
Parallel Flow	$\varepsilon = \frac{1}{1 + C^*} \left[1 - \exp \left[-\left(1 + C^* \right) \text{NTU} \right] \right]$	NTU $= -\frac{1}{1+c^*} \ln \left[1 + s \left(1 + c^* \right) \right]$
Cross flow, C _{min} mixed and C _{max} unmixed	$\varepsilon = 1 - \exp\left(-\frac{1 - \exp(-C^*NTU)}{C^*}\right)$	NTU = $-\frac{1}{C^*} \ln \left[1 + C^* \ln (1 - s) \right]$
Cross flow, C_{max} mixed and C_{min} unmixed	$s = \frac{1}{c^*} \left[1 - \exp\left\{-c^* \left[1 - \exp\left(-NTU\right)\right] \right\} \right]$	NTU – $-\ln\left 1+\frac{1}{C^*}\ln\left(1-\varepsilon C^*\right)\right $
1 to 2 shell-and- tube HEX	1+ $c^* + (1 + c^{*2})^{1/2}$ $\frac{1 + \exp\left\{-\text{NTU}\left(1 + c^{*2}\right)^{1/2}\right\}}{1 - \exp\left\{-\text{NTU}\left(1 + c^{*2}\right)^{1/2}\right\}}$	NTU $- \frac{1}{(1 + C^{*2})^{1/2}} \ln \frac{2 - \varepsilon \left\{ 1 + C^{*} - \left(1 + C^{*} \right)^{1/2} \right\}}{2 - \varepsilon \left\{ 1 + C^{*} + \left(1 + C^{*} \right)^{1/2} \right\}}$

Effectiveness, NTU Relationship

(B) Effectiveness for heat exchangers as a function of (NTU) (graphically)

Heat Exchanger

The Total Rate of Heat Transfer Overall Energy Balance

Heat Exchanger

The Total Rate of Heat Transfer Overall Energy Balance

$$
\frac{q = m_{h}c_{p,h}(T_{h,i} - T_{h,o})}{= m_{c}c_{p,c}(T_{c,o} - T_{c,i})}
$$

$$
q = U A \Delta T_{m}
$$

Where:

U: Overall Heat Transfer Coefficient

$$
R = \frac{1}{U_i A_i} = \frac{1}{U_o A_o} \approx \frac{1}{h_i A_i} + \frac{1}{h_o A_o} \qquad & U_h A_h = U_c A_c
$$

Heat Exchanger

Methods of Heat Exchanger Calculations

Methods of Heat Exchanger Calculations

Heat Exchanger Design Problems

For this type of problems, it is the engineer who must chose the appropriate heat exchanger type and determine its size (i.e. heat transfer surface area) *Known Parameters: (given or desired)*

$$
T_{h,i}
$$
, $T_{h,o}$, $T_{c,o}$, $T_{c,i}$, m_h , m_c

Energy balance:

$$
q = \dot{m}_h c_{p,h} (T_{h,i} - T_{h,o})
$$

=
$$
\dot{m}_c c_{p,c} (T_{c,o} - T_{c,i})
$$

Methods of Heat Exchanger Calculations

Heat Exchanger Design Problems

With the LMTD method, the task is to *select a heat exchanger that will meet* the prescribed heat transfer requirements. The procedure to be followed by the selection process is:

- 1) Select the type of heat exchanger suitable for the application.
- 2) Determine any unknown inlet or outlet temperature and the heat transfer rate using an energy balance.
- 3) Calculate the log mean temperature difference *Tlm* and the correction factor *F,* if necessary.
- 4) Obtain (select or calculate) the value of the overall heat transfer coefficient *U.* 5) Calculate the heat transfer surface area *As .*

Methods of Heat Exchanger Calculations

Performance Calculation Problem

- \checkmark Here the heat exchanger size and type are known.
- \checkmark It is required to determine the heat transfer rate and/or the outlet temperatures of the hot and cold.
- \checkmark Here the task is to determine the heat transfer performance of a specified heat exchanger or to determine if a heat exchanger available in storage will do the job.
- \checkmark The LMTD method could still be used for this alternative problem, but it is not practical
- \checkmark In an attempt to eliminate the iterations from the solution of such problems, the **effectiveness–NTU method,** can be used to simplify heat exchanger analysis.

The problem in this case is solved by NTU method as an easy and direct solution

Heat Exchanger

Example

A counter-flow double-pipe heat exchanger is to heat water from 20 \degree C to 80 \degree C at a rate of 1.2 kg/s. The heating is to be accomplished by geothermal water available at 160°C at a mass flow rate of 2 kg/s. The inner tube is thin-walled and has a diameter of 1.5 cm. If the overall heat transfer coefficient of the heat exchanger is 640 W/m^2 ^oC, determine the length of the heat exchanger required to achieve the desired heating. Assume the specific heats of water and geothermal fluid to be 4.18 and 4.31 kJ/kg \cdot °C, respectively. Hot

Solution

The rate of heat transfer in the heat exchanger can be determined from

$$
\dot{Q} = [\dot{m}C_p(T_{\text{out}} - T_{\text{in}})]_{\text{water}} = (1.2 \text{ kg/s})(4.18 \text{ kJ/kg} \cdot {}^{\circ}\text{C})(80 - 20){}^{\circ}\text{C} = 301 \text{ kW}
$$

the outlet temperature of the geothermal water is determined to be

$$
\dot{Q} = [\dot{m}C_p(T_{\text{in}} - T_{\text{out}})]_{\text{geothermal}} \longrightarrow T_{\text{out}} = T_{\text{in}} - \frac{\dot{Q}}{\dot{m}C_p}
$$

= 160°C - $\frac{301 \text{ kW}}{(2 \text{ kg/s})(4.31 \text{ kJ/kg} \cdot \text{°C})}$
= 125°C

Knowing the inlet and outlet temperatures of both fluids, the logarithmic mean temperature difference for this counter-flow heat exchanger becomes

Chapter (4)

Heat Exchanger

Heat Exchanger

$$
\Delta T_1 = T_{h, \text{ in}} - T_{c, \text{ out}} = (160 - 80)^\circ \text{C} = 80^\circ \text{C}
$$

$$
\Delta T_2 = T_{h, \text{ out}} - T_{c, \text{ in}} = (125 - 20)^\circ \text{C} = 105^\circ \text{C}
$$

and

$$
\Delta T_{\rm lm} = \frac{\Delta T_1 - \Delta T_2}{\ln \left(\Delta T_1 / \Delta T_2 \right)} = \frac{80 - 105}{\ln \left(80 / 105 \right)} = 92.0^{\circ} \text{C}
$$

Then the surface area of the heat exchanger is determined to be

$$
\dot{Q} = UA_s \Delta T_{lm} \longrightarrow A_s = \frac{\dot{Q}}{U \Delta T_{lm}} = \frac{301,000 \text{ W}}{(640 \text{ W/m}^2 \cdot {}^{\circ}\text{C})(92.0 {}^{\circ}\text{C})} = 5.11 \text{ m}^2
$$

$$
A_s = \pi DL \longrightarrow L = \frac{A_s}{\pi D} = \frac{5.11 \text{ m}^2}{\pi (0.015 \text{ m})} = 108 \text{ m}
$$