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Relations between spectral and

end-user classes
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When discrimination problems are
found...

e Modify the legend (if end-user agreesl!).
e Use non-spatial criteria: textures, context.

e Use ancillary information: DEM, property
limits, soill maps...

e Use images from another dates.
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Classification phases

e [raining (define quantitatively the required
classes):
» Supervised.
» Unsupervised.

e Assignment (include all pixels in any of the
defined categories).

e Assessment of the results.

http://gisgeography.com/image-classification-techniques-remote-sensing/
http://www.sc.chula.ac.th/courseware/.htm18/Lecture/remote2309507

http://gisgeography.com/open-source-remote-sensing-software-packages:
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Supervised training
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Portable radiometers are very
useful during the training phase
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Spectro-radiometric measurements in the field are useful to select the most
convenient sensor and spectral bands
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Methods to extract training fields

e Polygon digitizing
» Be aware of spatial
autocorrelation.

» Border effects.

e Seeds.
» Spectral Distance.
» Spatial Distance.
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Problems while selecting training
fields

a) homogeneous areas b) Heterogeneous areas ¢) Heterogeneous categories
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Training fields in the study area
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Training selection after segmenting
the image

Original Segmented Polygon Limits
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Multisegmentation
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Other classification criteria

e Decision tree classifier.
e Contextual classifiers:

e Fuzzy classification.
e Neural network classifier.
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Example of a simple decision tree
classifier
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Contextual classifiers

e Use objects instead of pixels.

e Objects are defined by spatial and spectral
properties.

e Spatial properties are used In the
classification, not just the spectral variables.

Dr. Hassan Mohamed

Chuvieco and Huete (2009): Fundamentals of Satellite Remote Sensing, Taylor and Francis



Objects can be characterized by
spatial and spectral variables
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Classification can be adapted to
the size of the objects
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Neural network classifiers
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Neural network structure

Network Topology:

» Number of layers.
» Number of neurons.

Learning algorithm: back propagation, quick-pro,
unsupervised.

Number of iterations.
Error levels.
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Learning process of an ANN
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Variation of weights during the
network learning

Iteration

0| 0.050| 0.100| 0.300 0.150 1.000 0.500 0461

1 0375| 0.051| 0.418 0.121 0.951 0.520 0424

5( 0606| 0.007| 0.570 0.117 1.240 0.909 0.391
10| 0642 -0.072| 0.641 0.196 1464 1.034 0378
50| 2224 | 2215 2.213 2.216 3.302 3.259 0.040
150 | 2810 -2.834 | 2.3810 2.835 4.529 4527 0.007
250 [ 2901 | -2.976 | 2.902 2977 4.785 4.784 0.005

After Richards, 1993
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An example of using an ANN for
classification of two categories
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Basis of fuzzy classification
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Types of fuzzy classifications

e Fuzzy k- or c-means (FCM)

» Parametric, similar to unsupervised clustering, performed

on one ‘layer (or band) only. It uses the c-means
algorithm of Bezdek

e Fuzzy maximum likelihood

» Uses the ‘hard’ mean and ‘hard’ covariance matrix. Based
on Wang's proposition for resolving mixed pixels, fuzzy
membership grades for each fixel.

e Fuzzy rule based

» Requires ‘fuzzification’ of the layer(s), inference and ‘de-

fuzzification’.
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Examples of fuzzy classification
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Basis of classification by binary
encoding
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Classification with ancillary
information

e [0 stratify the image before the classification:
|.e. bioclimatic regions.

e [0 Include additional layers In the
classification (DTM, slopes, rainfall...).

e [0 modify assignments after the
classification: boundaries or properties, soll
maps, etc.
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Change detection

Change detection involves the use of multi-temporal data
sets to discriminate areas of land cover change between
dates of imaging. Ideally, change detection procedure
should involve data acquired by the same (or similar)
sensor and be recorded using the same spatial resolution,
viewing geometry, spectral bands, radiometric resolution,
and time of day. Often anniversary dates are used to
minimize sun angle and seasonal differences. Accurate
spatial registration of various dates of imagery is also a
requirement for effective change detection. Registration to
within 0.25 to 0.5 pixel is generally required. Clearly, when
misreqgistration is greater than one pixel, numerous errors
will result when comparing the images.
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Change detection
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Change detection methods

Image Differencing
The most common and simple method

Image ratioing
Division of one image by another
Operates on individual image bands
Areas of ‘change’ may be thresholded (e.g., = +25% and < -25%)

Post-classification comparison

Each image is classified independently, reducing preprocessing need
Resulting classifications are compared to identify change
Change detection results affected by accuracy of input classifications

Change vector analysis
Compares spectral properties of image pixels between dates
Expresses change as vectors in spectral space
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Image differencing

Image differencing or image subtraction simply involves the
subtraction of one image from another

Operates on individual image bands

Areas of ‘change’ may be thresholded (e.g., » +25% and < -25%)
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