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SUMMARY

The thesis wider objective aimed to develop an assessment and monitoring computerized
system that uses the satellite images to Land-Use Land-Cover classification (LULC) and
bathymetry detection in coastal/Lakes water bodies.

So, the first part of this research assessed a methodology for LULC using multispectral
satellite images. The study was executed in a heterogeneous coastal area separated to five
classes: sand, building, water, vegetation, and grass-lake-type. This methodology used the
Bagging Ensemble (BE) technique with Random Forest (RF) as a base classifier for
improving classification performance through decreasing errors and prediction variance. A
supervised pixel-based classification method with Principle Component Analysis (PCA) for
feature selection from available attributes using a Landsat 8 satellite image was proposed.
The used attributes were coastal, visible, near-infrared, short-wave infrared and thermal
bands as well as Normalized Difference Vegetation Index (NDVI) besides Normalized
Difference Water Index (NDWI). To assess the classification accuracy of BE with RF, it was
compared to BE with Support Vector Machine (SVM) and Neural Network (NN) as base
classifiers. The results were assessed according to omission, commission errors, and overall
accuracy. The revealed results of the proposed methodology using BE with RF outperforms
NN and SVM classifiers with 93.3% overall accuracy. The BE with SVM and NN as base
classifiers produced 92.6% and 92.1% overall accuracy, respectively. It was confirmed that
using BE with RF as a base classifier outperforms SVM and NN as base classifiers.

On the other hand, the second part of this study assessed the performance of three
proposed empirical approaches the ensemble regression trees fitting algorithm using bagging
(BAG), ensemble regression trees fitting algorithm of least squares boosting (LSB), and
support vector regression algorithm (SVR) for bathymetry calculations in four various areas:
the shallow coastal area of EI-Burullus Inlet, Egypt, which is a turbid sandy bottom area with depths
to 6 m; the Alexandria harbor shallow coastal area, Egypt, as an example of a low-turbidity,
silt-sand bottom water area with depths ranging from 4 m to 10.5 m; the Lake Nubia entrance
zone, Sudan, which is considered a high-turbidity, unsteady, clay bottom area with a depth of
6 m; and Shiraho, Ishigaki Island, Japan, a coral reef area with a depth of 14 m. Landsat 8
and Spot 6 satellite images were used to assess the performance of the proposed models.
These proposed models were used to obtain bathymetric maps using the reflectance of green,
red bands, blue/red besides green/red band ratios. The bathymetry results of the proposed

models were compared with the corresponding results produced from two conventional



empirical methods: the neural network (NN) model and the Lyzenga generalized linear model
(GLM). Compared with echosounder field points, BAG, LSB, and SVR results revealed
higher accuracy ranges from 0.04 to 0.35 m more than GLM. The BAG algorithm, produced
the most correct results.

In addition, the third part of the study suggested RF and Multi-Adaptive Regression
Spline (MARS) approaches for bathymetry mapping. Data from Landsat 7, Landsat 8, and
Spot 6 satellite images were used to assess the performance of these models. These models
were used to obtain bathymetric maps using the same abovementioned inputs. The algorithms
were tested over the abovementioned study areas except EI-Burullus areas which was
replaced with ElI Nubia entrance zone using Landsat 7 image. The results were compared
with the same two conventional empirical methods NN and GLM. When compared with field
points, the RF and MARS results outperformed Lyzenga GLM results. Furthermore, the RF
approach produced more accurate results with average 0.25 m RMSE enhancements range
than the NN model.

Finally, the fourth part of this study proposed BE as a hybrid based approach for
bathymetry detection. This approach was applied in two diverse areas with different number
of available field points: Alexandria port, Egypt, and a part of Shiraho Island, Japan, with
12.5 m water depths. For NN and RF methods the green and red band logarithms corrected
from atmospheric and sun-glint systematic errors of Landsat 8 and Quickbird satellite images
were set as input data and water depths as output. The proposed approach ensemble the
outputs from NN and RF approaches. To validate the improvement of BE proposed approach,
it was compared with NN and RF results. Achieved results were also compared with
echosounder water depths field data. From the produced results, around 20 cm and 10 cm
improvements in the accuracy of detecting depths over two studied areas, respectively. As a
result, it can be concluded that BE ensemble produced more accurate results than using single

NN or RF approaches for bathymetry mapping over diverse areas.
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CHAPTER 1
INTRODUCTION

1.1. Land Cover Classification

Land Use Land Cover (LULC) mapping using multispectral images has numerous benefits,
with covering large areas, fast acquisition to huge amounts of data, and cheaper costs
compared to field methods [1][2]. For correct LULC classification, a proper algorithm is
required. Therefore, several researchers have put forth great effort to increase classification
accuracy by developing several classification approaches [3]. In recent times, Ensemble
Classifiers (EC), or effective Multiple Classifiers Fusion (MCF), have been found to overtake
single classifier systems [4]. By exploiting the benefits of diverse classification methods and
decreasing their uncorrelated errors by fusing them, the overall accuracy can be enhanced [5].

Dara [5] and Benediktsson et al. [6] demonstrated the various approaches for multiple
classification fusion systems. The ensemble classifier can be applied using many techniques,
such as bagging, boosting, random forest, majority voting, and the weighted sum of base
classifiers. Du et al. [7] and used various combinations of approaches including parallel
bagging and sequential boosting classifier systems for classifying hyperspectral data. Salah et
al. [1] used Fuzzy Majority Voting and Dempster-Shafer (DS) techniques for combining
classification results of three different classifiers using Lidar and aerial images. Chu and Ge
[3] used Feature Selection (FS) methods with Genetic Algorithm (GA) and multiple
classifiers combination based on Dempster-Shafer Theory of Evidence for classifying land
cover features using integration of SAR and satellite imagery. Guan et al. [8] applied RF to
automatically select the optimal and uncorrelated features for land-use classification using a
combination of Lidar data and ortho-imagery. Samia et al. [4] proposed a better ensemble
algorithm depending on the margin theory as a fundamental for the new bagging technique to
reduce both the required training data set and the complexity of ensemble approach, thereby
enhancing the accuracy.

Zheng [9] used boosting and bagging ensemble techniques with NN as base classifiers and
compared it against SVM and logistic regression models for binary prediction with financial
time series data. The results show the bagging of NN was superior to SVM and logistics

regression models, with a reduction of prediction variance.



Akar and Gungor [10] compared the RF ensemble technique to SVM and gentle
adaboosting (GAB) using two different satellite images, Ikonos and Quickbird. The results
show RF outperforms SVM and GAB.

Kulkarni and Kelkar [11] applied bagging, boosting, and adaboosting ensemble techniques
with backpropagation neural networks with different numbers of hidden neurons for
classifying Landsat satellite imagery. These ensembles were compared with single
backpropagation neural network and radial basis function network. The achieved results
demonstrated the outperforming of ensemble techniques compared to single classifiers.

Further, the three ensemble methods gave almost equal results.

1.2. Bathymetry Detection

Coastal and lake shallow areas bathymetry is important for various applications, for
instance, spatial monitoring of lakes, sustainable management of natural, and resources
coastal engineering sciences [12-13-14-15]. Additionally, sediments erosion and deposition
in these shallow areas are rapid because of wave propagation, tidal currents, as well as severe
human activities. Consequently, accurate measurements and updated monitoring of these

areas, particularly bathymetry, need to be accomplished.

At present, single and multibeam echosounders as well as Lidar represent the conventional
approaches for bathymetry measurements. The multibeam echosounder is particularly useful
for deep waters with depths up to 500 m due to its higher accuracy and complete bottom
coverage. On the other hand, the single-beam echosounder can perform sea bottom maps with
suitable vertical accuracy at cheaper cost than the multibeam echosounder [16]. Nevertheless,
despite the high level of depth accuracy they can produce, these systems are expensive and
difficult to use, particularly in shallow zones where coral reefs, rocks, and general
shallowness are an obstacle to the navigation of surveying ships [17]. In recent times,
airborne Lidar technology has been developed for bathymetry applications. Still, both
systems are expensive, time consuming, laborious, and have relatively low coverage

capability.

Optical satellite images represent a time-effective, wide-coverage, and cheaper alternative
to conventional techniques for bathymetry applications [16].

In line with the previous literature review, two methods have been used for bathymetry
detection: analytical and empirical. The analytical techniques using spectral look- up tables in

interpretation of remote sensing data especially in the water depths determination [18]-[19].
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These methods need the spectral data about the bottom surface reflectance, suspended and
dissolved substances and applied with hyperspectral satellite or airborne images [20]. On the
other hand, empirical methods rely on the relation between the reflectance of the water

bottom surface and water depths in sample positions, which makes these methods simpler.

Lyzenga and Stumpf methods are counted the most broadly used empirical methods for
bathymetric data detection [20].

Lyzenga [21] presented the log-linear empirical methodology using single band for
determining water depths from satellite or airborne images. The log-linear theory was
dependent on get rid of all other reflected values affecting water bottom surface signals.
Lately, the log-linear approach was developed to create a correlation between several bands
and bathymetric values by Lyzenga et al. [22]. The later approach was performed
successively by further studies using diverse satellite images: Quickbird [23], Worldview 2
[24], Spot 4 [16], in addition to Landsat 8 images [15].

Stumpf et al. [25] developed another method dependent on band ratios, as the difference in
attenuation between two different spectral bands can be used for determining bathymetry.
Lately, this approach has been improved by other scientists for instance Su et al. [26] and
Bramante et al. [27].

In addition to these two empirical approaches, a novel alternative approach was created by
Ceyhun and Yalg¢in [14] for bathymetry mapping using the Neural Network (NN) technique.
This approach implement a nonlinear relation between satellite image spectral bands and
bathymetric values, cope the drawbacks of regressive approaches. Continuously, numerous
scientists have confirmed the precedency of NN method to traditional approaches using
diverse satellite images, such as, Landsat images [28], IRS P6-LISS Ill images [29], and
Quickbird images [30]. More details about bathymetry detection methods from satellite

images can be found in [31].

1.3. General Research Gaps

First for LULC classification, Bagging in other words (bootstrap aggregating) is one of the
most prevalent ensemble approaches, designed initially for improving machine learning
methods. Decreasing the variance of unstable methods for instance NN, SVM, and Decision

trees by averaging diverse algorithms is the main improvement of bagging method.



Subsequently, the results will be better than fitting a single base classifier. Also, this

technique decreases the probabilities of over-fitting [33].

Bagging and Random Forest techniques have been broadly used for LCLU classification.
This study is probably, to the best of authors’ knowledge, the first study for integrating these

techniques for classifying multispectral satellite imagery.

Second for Bathymetry detection, analytical approaches have three major demerits. First,
the hyperspectral satellite images used by these approaches are not accessible for enormous
areas with coarse spatial resolution. Furthermore, the alternative airborne techniques are
costly especially for wide coverage areas. Second, the analysis of the hyperspectral images is
computationally difficult. Finally, these methods are comparatively complex. As a result, the

empirical methods with multispectral imageries considered a valuable alternative [32].

However, Lyzenga, Stumpf, and NN methods have numerous demerits. The Lyzenga
approach suppose that the bottom cover surface is entirely homogenous and that the water
column is similar in the entire bottom cover area. The Stumpf approach overcomes this
drawback; still, it has no physical origin moreover its parameters are calculated by a trial
procedure [28]. Finally, the NN method has numerous drawbacks for example it’s complex
black-box nature; sensitive to slightly minor alteration in the input data values, resulting in

high variances in output results; and its weakness to overfit the input bathymetry data.

1.4. Research Objectives

The thesis wider objective is to develop an assessment and monitoring computerized
system that uses the satellite images for LULC classification over coastal/Lakes water bodies.

In addition, to detect bathymetry over the same coastal/Lakes areas.

In the first part of this study a LULC classification methodology was proposed using BE of
RF as a base classifier. This proposed approach reduces the limitations of previous
approaches, such as prediction variances, and thus improves the overall accuracy. The
methodology was evaluated using Landsat 8 imagery of the EI-Burullus Lake in Egypt, and
compared with two other previous methods. The criteria used to evaluate the results include

commission, omission errors, and the overall accuracy of each classifier.

In addition, this study proposed various empirical approaches for bathymetry detection in
shallow coastal or lake areas and endeavors to overcome the disadvantages of the NN and

Lyzenga generalized linear model (GLM) methods. These approaches are Bagging (BAG),
4



least squares boosting (LSB), support vector regression algorithm (SVR), random forest (RF), the
multi-adaptive regression spline (MARS), and Bagging Ensemble (BE) of two supervised
algorithms. All the proposed algorithms are more stable and more invincible to overfitting
than NN, simpler than analytical approaches, and less affected by other environmental factors
than Lyzenga GLM. The proposed bathymetry methodologies were applied using various
satellite images. The achieved bathymetry results are then evaluated and compared with

echosounder bathymetry data over different study areas.
The study aimed to:

1) Proposes improved method of LULC classification for assessment of water bodies
detection.

2) Proposes improved methods for bathymetry determination using Multispectral images.

The proposed improved new methods can be used for bathymetry detection on the shallow

water bodies including coral reefs areas.

1.5. Thesis Layout

The remainder of this thesis is structured as follows:
Chapter 2: Study Areas and Available Data.
Chapter 3: Methodology.
Chapter 4: Results.
Chapter 5: This chapter contains discussions, summarizing the main findings of the research
with comparison to related researches. Additionally, it contains concluding remarks of

research.
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2. Hassan Mohamed, Abdelazim Negm, Mohamed Zahran and Oliver C. Saavedra, “Assessment of

Ensemble Classifiers using Bagging Technique for Improved Land Cover Classification of
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CHAPTER 2
STUDY AREAS AND AVAILABLE DATA

This chapter presents the study areas and available data used for LULC classification and bathymetry

detection.

2.1. Study Areas
The study area located at the EI-Burullus Lake and its surroundings. It is a coastal heterogeneous area

with a diversity of main features as land, buildings, water, vegetation, and lake plants [37]. Hence, it can

serve as a suitable test area for LCLU classification. Figure 2-1 illustrates the study area.
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Figure 2-1. El-Burullus Lake, Nile-Delta, Egypt.

In this research, the bathymetry detection was divided to three parts and tested over six various areas
with different satellite images. The first part of bathymetry study included four study areas as follow:

The first study area was the EI-Burullus Inlet coastal zone, which extends along the northern part of the
El-Burullus Lake of Egypt, and has dimensions of 9 km in the east-west direction and 2.5 km in the
north—south direction (see Figure 2-2). It is a nearly uniform shallow, turbid water area with depths up to
6 m and high rates of sediment movement and coastal change. Most of the sea bottom is covered by sand
[37].

The second study area was Alexandria harbor, Egypt (see Figure 2-3a). It is a properly deep, low
turbidity, quiet water area, due to its coastal barriers, and has a depth range of 10.5 m. The port bottom

cover surface is silt-sand.



The third study area was the entrance area of Lake Nubia, which is located in Sudan (see Figure 2-3b).
It is a properly irregular, shallow, very turbid water area with depths up to 6 m with high amounts of
sediment alterations in addition to annual flood changes. The lake has a clay bottom cover surface.

The forth study area was Shiraho which is a subtropical territory, located in the southeastern part of
Ishigaki Island, Japan (see Figure 2-4). It is rough shallow and little turbid with depths up to 14 m.
Shiraho is varied area with a rich marine biodiversity that consist of numerous ecosystems as seagrass,

mangroves, and coral reefs.
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Figure 2-2. The 1% study area of El-Burullus coastal strait area, Egypt.
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Figure 2-3. (a) The 2nd study area of Alexandria port coastal area, Egypt (b) The 3 study area of Nubia
Lake entrance part, Sudan.
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Figure 2-4. The 4"" study area of Shiraho, Ishigaki Island, Japan.

The second part of bathymetry study included the last abovementioned three areas of Alexandria
harbor, Egypt, the Lake Nubia entrance zone, Sudan, and Shiraho, Ishigaki Island, Japan. In addition,
another part from the south entrance of Nubia Lake was added for this study using Landsat 7 image as

shown in figure 2-5.
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Figure 2-5. The added study area of Nubia Lake entrance zone, Sudan.



Finally, the third part of bathymetry study was performed over two study areas. In adittion to the
abovementioned Alexandria harbor area, Egypt, a part of Shiraho, Ishigaki Island, Japan, was added for
this study using Quickbird image as shown in figure 2-6.
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Figure 2-6. The added study area which is a part of Shiraho, Ishigaki Island, Japan.
2.1.2. Available Satellite Images

A Landsat 8 satellite image with eleven multispectral bands was used for LCLU classification of Lake El

Burullus study area. The image was picked up on 14 August 2014 (see Figure 2-7).

Figure 2-7. Landsat-8 satellite image over the selected study area.

For bathymetry determination Landsat 8 satellite images were used for the first, second and the forth
study areas. Also, Spot 6 image with a spatial resolution of 1.5 m was used for the third study area. The
necessary parameters for performing radiometric images corrections were included in images metadata
files. The first Landsat 8 image was acquired during quiet weather surroundings on 22 March 2014. The
second Landsat 8 image was acquired during calm weather environments on 3 August 2014, and the third

10



Landsat 8 image was collected during windy surroundings on 5 June 2013. The Spot 6 image was
acquired during quiet weather conditions on 12 January 2014. These four images were selected so as to
be synchronised with echosounder field observation times for all the study areas.

Moreover a Landsat 7 satellite image was added for the second part of bathymetry over the additional
area of Lake Nubia entrance zone. The Landsat 7 image was collected during windy conditions on 15
December 20009.

Lastly, a Quickbird satellite image was added for the third part of the bathymetry study. Quickbird
image have a spatial resolution of 0.6 m and was collected during windy conditions on 20 July 2007.

2.1.3. Echosounder Data

The field reference observed water depths of the first and second study areas used for validating the
algorithms were acquired by a NaviSound model 210 Hydrographic Systems echosounder instrument
with attached Trimble 2000 GPS. The maximum accessible depth level of this echosounder was 400 m,
and its vertical accuracy was 0.01 m at 210 kHz (see Figures 2-8 and 2-9). The third study area observed
field water depths were picked up by an Odom Hydrographic Systems Echotrac model DF 3200 MKII
echosounder device with built-in DGPS. The depth range of the echosounder was 200 m and its vertical
accuracy was 0.01 m + 0.1% of depth (see Figure 2-10). Finally, the reference water depths of the forth
study area were observed by a single beam Lowrance LCX-15MT dual frequency (50/200 kHz)
transducer and 12-channel GPS antenna. The vertical accuracy was + 0.03 m [38] (see Figure 2-11).

Approximately 500 field points were observed for the first study area, 2500 field points were observed
for the second study area, 12500 for the third study area, and 14500 for the fourth study area. These

points were used for validation and evaluation of all the bathymetric approaches.
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Figure 2-8. Field bathymetry Reference points of 1% study area from echo-sounder.
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Figure 2-9. Field bathymetry Reference points of the 2" study area from echo-sounder.
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Figure 2-10. In-situ bathymetry Reference points of the 3" study area from echo-sounder.
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Figure 2-11. Field bathymetry Reference points of the 4" study area from echo-sounder.

The additional area of the second part of bathymetry study over Lake Nubia entrance zone have about
4500 observed field water depths. These points were picked up by an Odom Hydrographic Systems
Echotrac model DF 3200 MKII echosounder device with built-in DGPS as shown in figure 2-12.
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Figure 2-12. Field bathymetry Reference points of the Lake Nubia added study area from echo-sounder.
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Finally, the third part of bathymetry study a part of Shiraho, Ishigaki, Japan reef area was added. About
8106 observed field water depths were picked up over this area with a single beam Lowrance LCX-15MT

dual frequency (50/200 kHz) transducer with 12-channel GPS antenna (see Figures 2-13).
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Figure 2-13. Field bathymetry Reference points of added part of Shiraho study area from echo-sounder.

The field data for Shiraho area were collected on 25-31 January 2013. Although there was a time
difference between the Quickbird imagery collection and the field data observation but it is worth noting.
As Shiraho area did not have any tsunami or big currents during these years so the bathymetry has no

significant change [38].
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CHAPTER 3
METHODOLOGY

3.1. Proposed Methodology for LULC Classification

The workflow processing steps for classifying Landsat-8 satellite image over El Burullus studied area
were as follow:
3.1.1. Imagery Data Pre-Processing
First, calculating the spectral top of atmosphere reflectance of each pixel value from DN values using
equation (1).
Second, computing At-Satellite Brightness Temperature for each pixel values of thermal infrared bands
from the computed radiances using the Thermal Atmospheric correction tool in Envi program. All the
required values were available in the image metadata file.
3.1.2. Creation of Attributes
For increasing the classification accuracy two other attributes NDVI and NDWI were computed from
visible and the near-infrared bands. The NDVI were calculated using red and near infrared bands also the
NDWI using green and near infrared bands. All the abovementioned steps were performed in an ENVI
environment.
3.1.3. Selecting Uncorrelated Attributes using Principal Component Analysis Approach
PCA approach was used for selecting uncorrelated attributes as it’s considered the most widely used
method for feature selection from enormous data sets.
3.1.4. Classification Algorithms
RF, SVM and, NN with the back-propagation (BP) algorithm base classifiers were applied to LCLU

classification then the ensemble is performed using the bagging approach.

1. Artificial Neural Network [3] [45] [34]

2. Support Vector Machines [39] [40] [41] [34]
3. Random Forest [50] [27] [51] [34]

4. Bagging Ensemble [30] [41] [56] [34]

For more details, the abovementioned references can be checked.
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The following Figure 3-1 illustrates the workflow processing steps for classifying Landsat-8 satellite

image over El Burullus studied area.
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Figure 3-1. The processing steps for Landsat-8 images classification and classification accuracy
comparison of all classifiers.

3.2. Proposed Methodologies for Bathymetry Determination (the first part)

All Landsat 8 and Spot 6 multispectral images of the studied areas were corrected for bathymetric
mapping as follows: 1) Converting the image pixel values to radiance values using the images metadata
file values according to equation 1.

2) Correcting atmospheric and sun glint errors for the image radiance values using the FLAASH tool and
equation 2, respectively. These two steps were accomplished using ENVI 5.3 program.

3) Four inputs were extracted from the corrected reflectance images were used for training all approaches
at the same location of sounding points. These values were red, green, blue/red, and green/red bands
logarithms then the outputs were the detected water depths.

4) For all study areas, these values were randomly separated to independent 75% training and 25% testing
points. For example, for El Burullus study area the field points were divided to 1875 and 625 points for

training and testing, respectively.
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5) Finally, the evaluation of all outputs from various approaches were done using the same independent
testing points depending on RMSE and R? values.

The following Figure 3-2 illustrates the workflow of the bathymetry detection steps of the first part.

Landsat 8 and Spot 6
Multispectral Images

Radiometric Calibration &
Atmospheric & Sun Glint
Corrections

-

Corrected Multispectral
Images Bands

.

Ground Bathymetry
for Calibration

Training Bathymetry
Algorithms

v

Proposed Approaches Comparison Approaches

[ svr ][ LsB ][ BAG |

Y
Evaluation of Bathymetry
RMSE & R? Maps

Figure 3-2. The processing steps of proposed methodologies for the first part of bathymetry mapping
from satellite images by different approaches.

3.2.1. Imagery Data-Preprocessing

3.2.1.1. Spectral Top of Atmosphere Radiance

Spectral top of atmosphere radiance were calculated from the imagery pixel digital numbers (DN)

values for each pixel as follows [42]:
Li= M * DN + A 1)

Where L, = top of atmosphere spectral radiance, DN = digital number, M, = multiplicative rescaling
factor for radiances specified for each band, and A, = additive rescaling factor for radiances specified for

each band. The M, and A, values were presented in the images’ metadata files (MTL files).
17



3.2.1.2. Atmospheric Correction

Atmospheric correction was performed to all images using the Fast Line-of-Sight Atmospheric
Analysis of Hypercubes (FLAASH™) tool in the Envi 5.3 software package. FLAASH carry out
radiative transfer based models founded on MODTRAN4 code [43] and has look-up tables for diverse
categories of the atmosphere. Various categories of aerosols are included in the FLAASH tool, which
explains the air particle properties as absorption and scattering. The calculated radiance images were used
as input for FLAASH tool. Over all the study areas, the maritime category were selected as aerosol model
category, the atmospheric model was tropical for hot areas, and two blue and infrared bands over water
were selected as aerosol retrieval [26]. Finally, the results were the atmospherically corrected reflectance

images.

3.2.1.3. Sun Glint Correction

The sun glint correction was applied after the atmospheric correction. The sun glint errors were
corrected using the correlation between the bands used for bathymetry detection and the near-infrared

band [44]-[16]. The de-glinted pixel value can be determined using Eqg. 2:
Ri' = Ri* bi (RNIR - MinNIR) 2

Where Ri' = de-glinted pixel reflectance value, Ri = atmospherically corrected reflectance value, bi =
regression line slope, RNIR = corresponding pixel value in NIR band, and MinNIR = min NIR value

present in the sample.

The following approaches used for bathymetry detection.

1. Least Squares Boosting Fitting Ensemble [45] [46] [33]

2. Bagging Fitting Ensemble [47] [48] [33]

3. Support Vector Regression [49] [50] [33]

4. Lyzenga Generalized Linear Model Approach [22] [16] [33]
5. Artificial Neural Network Approach [14] [51] [33]

For more details, the abovementioned references can be checked.

3.3. Proposed Methodologies for Bathymetry Determination (the second part)

The Landsat 8, Landsat 7, and Spot 6 multispectral images of the four studied areas were corrected for

bathymetric mapping using the same abovementioned processing steps.
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Figure 3-3 illustrate the workflow of the bathymetry detection steps.
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Figure 3-3. The processing steps of proposed methodologies for the second part of bathymetry mapping
from satellite images by various approaches.
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The following approaches proposed for bathymetry detection.
1. Random Forest [52] [8] [53]
2. Multi Adaptive Regression Spline [54] [55] [56]

For more details, the abovementioned references can be checked.

3.4. Proposed Methodologies for Bathymetry Determination (the third part)

For bathymetry mapping the NN and RF approaches were applied to the pre-processed Landsat 8 and

Quickbird multispectral images and their predicted outputs were combined using BE algorithm.

The Landsat and Quickbird multispectral images of the study areas were corrected for bathymetric
mapping as follows:
1) Converting the image pixel values to radiance values using the images metadata file values according
to equation 1.
2) Correcting atmospheric and sun glint errors for the image radiance values using the FLAASH tool and

equation 2, respectively. These two steps were accomplished using ENVI 5.3 program.
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3) Four inputs were extracted from the corrected reflectance images are used for training all approaches
at the same location of sounding points. These values were red, green, blue/red, and green/red bands
logarithms then the outputs were the detected water depths.

4) For all study areas, these values were randomly separated to independent 65% training, 10%
validation, and 25% testing points. For example, Shiraho study area field points were divided to 5472,
608 and 2026 points for training, validation, and testing, respectively.

5) BE approach was applied to ensemble the outputs from NN and RF methods. The 10% validation
points were used for training the BE approach with NN and RF outputs as input values and predicted
depths as outputs.

6) Finally, the evaluation of all outputs from various approaches were determined using the same
independent testing points depending on RMSE and R? values.

The following figure illustrate the workflow of the bathymetry detection steps.
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Figure 3-4. The Processing steps for the third part of bathymetry detection using BE approach.

The following approaches proposed for bathymetry detection.
1. Artificial Neural Network [14] [51] [33]

2. Random Forest [52] [8] [53]

3. Bagging Ensemble [11] [47] [57]

For more details, the abovementioned references can be checked.
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CHAPTER 4

RESULTS

4.1. Results of LULC Proposed Methodology

The corrected input data was decreased to three principal components using 95% data variance. RF,
SVM, and NN base classifiers were performed to Landsat 8 satellite image. At that point, bagging
ensemble was used with these classifiers in a hierarchal structure. All these steps and the classification
approaches were implemented in Matlab program environment.

For evaluating the accuracy of all used classifiers, reference field data was collected from Landsat 8
satellite image using field trip signature observations and old classified maps. The accuracy evaluation
using omission, commission errors for all classes, and overall accuracy, with 1000 points as the test data
uniformly spread over the study area. Table 4-1 presented evaluation results of the three single classifiers.

Moreover, table 4-2 presented the related accuracy evaluation results of ensemble classifiers.

Figure 4-1 illustrates the classification resulted maps of RF, SVM, NN, BE with RF, BE with SVM, and

BE with NN approaches.
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Figure 4-1. Classification resulted maps for Landsat 8 satellite image. (a) RF (b) BE with RF (¢c) SVM
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Figure 4-2. Demonstrate classification accuracy enhancement using BE with RF, SVM, and NN with the
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Figure 4-2. The classification accuracy enhancement using BE with the three base classifiers RF, SVM,

and NN.
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Table 4-1. The omission, commission errors for the five classes and overall accuracy of the three base

classifiers RF, SVM, and NN.

Com. om. Overall
Classifier Class
Err. (%) Err. (%) Acc. (%)
Water 5.01 7.32
Vegetation 4.15 6.73
RF Land 6.70 5.24 92.8
Buildings 12.44 10.66
Grass Lake 7.98 5.98
Water 6.15 8.04
Vegetation 3.69 6.28
SVM Land 7.41 5.92 92.6
Buildings 11.37 8.78
Grass Lake 8.51 8.02
Water 7.5 10.63
Vegetation 8.29 7.87
NN Land 9.79 2.78 914
Buildings 11.94 9.69
Grass Lake 5.32 11.44

Table 4-2. The omission, commission errors for the five classes and overall accuracy of BE with the three
base classifiers RF, SVM, and NN.

Classifier Class Com. om. Overall
Err. (%) Err. (%) Acc. (%)
Water 3.59 6.47
Vegetation 4.61 2.82
BE with RF Land 4.23 9.50 93.3
Buildings 14.69 7.22
Grass Lake 5.85 7.81
Water 4.62 7.00
Vegetation 3.69 7.11
BE with SVM Land 6.35 7.81 92.6
Buildings 13.74 6.67
Grass Lake 8.51 8.51
Water 5.13 8.87
Vegetation 5.53 5.09
BE with NN Land 7.41 6.42 92.1
Buildings 13.74 7.61
Grass Lake 7.45 11.68
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4.2. Results of First Part of Proposed Bathymetry Detection Methods

The proposed methods for bathymetry mapping SVR, LSB and BAG were tested using the corrected
Landsat 8 and Spot 6 multispectral images and compared with NN and GLM algorithms. GLM produced
the following equations for bathymetry mapping over the four study areas respectively:

Zgi Burulius= 3916.2 + 6231 Lg — 6750 Lr — 4088 B/R— 3670 G/R + 467.4 L Lr — 4069 Lc B/R + 1565 Lr

G/R —216.4 Lg G/R — 4463 L BIR + 4618 B/R G/R 3)
ZAlex port = 17.25 — 4.69 L — 0.51 Lg + 0.06 B/R—0.10 G/R + 0.65 Lg Lr — 0.03 Lg B/R — 2.30 Lr G/R +
0.06 Lg G/R +0.004 B/R G/R 4)
Znubia lake = 2912.2 — 904.96 L + 1219.7 Lg — 3024.6 B/R— 1900.7 G/R + 19.35 Lg Lr — 1.06 Lg B/R +
1.07 Lr G/R — 18.44 Lg G/R — 1281.1 Lr B/R + 2143.8 B/R G/R (5)
Zshiraho = —15.185 + 29.67 L — 39.73 Lr — 10.48 B/R + 73.43 G/R + 0.44 L Lr + 28.63 Lg B/R — 15.2
Lr G/R +5.09 Lg G/R — 18.22 Lr B/R +3.36 B/R G/R (6)

Where Lg is the computed logarithm of the corrected green band values, Lr is the computed logarithm
of the corrected red band values, B/R is blue divided by red and G/R is green divided by red logarithms
band values.

The SVR was performed using the PUK kernel function and the sequential minimum optimisation
SMO for solving the optimisation problem. The SVR were performed using the following set of
parameters after many trials: C = 1, € = 0.0, { = 0.001, and tolerance = 0.001. The parameters of PUK
kernel were o = 0.5 and ® = 0.5. Alternatively, the NN has been trained using Levenberg-Marquardt
backpropagation training function with 10 hidden layers. The regression ensemble algorithms LSB and
BAG were ensembles with 50 regression trees. These parameters for each algorithm were selected to
achieve the least possible RMSE and maximum R? values. These algorithms and the statistical analysis
were applied in MATLAB environment. The SVR code was originally established by Clark [58].

Figures 4-3, 4-5, 4-7, and 4-9 show the produced bathymetric maps resulted from the three models
using Landsat 8 and Spot 6 satellite images over the four study areas. Figures 4-4, 4-6, 4-8, and 4-10
shows the assessment of the three models, and Tables 4-3, 4-4, 4-5, and 4-6 presents the resultant RMSE

and R? values.
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Figure 4-3. Bathymetric maps produced from each algorithm using Landsat-8 imagery over El Burullus
inlet area, Egypt. (a) GLM (b) NN (c) SVR (d) LSB (e) BAG.
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Figure 4-4. The resultant continuous fitted models for EI Burullus Lake area, Egypt. Depths are
represented as points, and the solid line represents the continuous fitted model (a) GLM (b) NN (c) SVR
(d) LSB (e) BAG.

Table 4-3. The resultant RMSEs and R? of all methods for bathymetry mapping EI Burullus inlet
area, Egypt.

Methodology | GLM NN SVR | LSB | BAG
RMSE (m) 1.19 1.07 | 1.12 1.15 1.02
R? 0.79 | 084 | 0.825 | 0.82 0.86
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Figure 4-5. Bathymetric maps produced from each algorithm using Landsat-8 imagery over Alexandria
port area, Egypt. (a) GLM (b) NN (c) SVR (d) LSB (e) BAG.

27



GLM Predicted Depths (1)

LSB Predicted Depths (1)

BAG Predicted Depths (m)

.

10 104
- R3=0.70
9 B 99 RMSE=087m
g4 4 8-
g
- a7
T
6 56
i
i v 5w gl g0
5 SR
4 g 49
3 T T T T 1 3 T
4 5 6 7 9 10 4 5
Field Depths (m)
(@
10 - N 10 ~
R2=0.69 = R=0.66
?1 RMSE=088 ’ £ 9 RuisEZ0.92 m
8 2 8
7 27
-
6 H 6
[ g
5 e I
hee £ P
44 9 4
3 T T T T 1 3 T
4 5 6 7 8 9 10 4 5
Field Depths (m)
(©
10 4 w
94 R2=082 fe.
| RMSE=065m
) | .
6 4
5 4
4 -
3 : : : ‘ : :
4 5 6 7 8 9 10
Field Depths (m)
(e)

7 8
Field Depths (m)
(d)

10

Figure 4-6. The resultant continuous fitted models for Alexandria harbor area, Egypt. Depths are
represented as points, and the solid line represents the continuous fitted model (a) GLM (b) NN (c) SVR
(d) LSB (e) BAG.

Table 4-4. The resultant RMSEs and R? of all methods for bathymetry mapping over Alexandria
port area, Egypt.

Methodology | GLM NN SVR | LSB | BAG
RMSE (m) 096 | 087 | 092 | 0.88 0.65
R? 062 | 070 | 0.66 | 0.69 0.82
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Figure 4-7. Bathymetric maps produced from each algorithm using Spot 6 imagery over Nubia Lake
entrance zone, Sudan. (a) GLM (b) NN (c) SVR (d) LSB (e) BAG.
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Table 4-5. The resultant RMSEs and R? of all methods for bathymetry mapping for Nubia Lake
entrance zone, Sudan.

Methodology | GLM NN SVR | LSB | BAG
RMSE (m) 1.02 | 096 | 098 | 0.99 0.85
R? 0.16 | 0.224 | 0.212 | 0.206 | 0.41
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Figure 4-9. Bathymetric maps produced from each algorithm using Landsat-8 imagery over Shiraho
Island area, Japan. (a) GLM (b) NN (c¢) SVR (d) LSB (e) BAG.
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Figure 4-10. The resultant continuous fitted models for Shiraho Island, Japan. Depths are represented as
points, and the solid line represents the continuous fitted model (a) GLM (b) NN (c) SVR (d) LSB (e)
BAG.

Table 4-6. The resultant RMSEs and R? of all methods for bathymetry mapping for Shiraho Island,
Japan.

Methodology | GLM NN SVR | LSB | BAG
RMSE(m) | 1.16 | 1.08 | 1.11 | 1.09 | 0.80
R? 073 | 078 | 0.75 | 0.76 0.88
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4.3. Results of Second Part of Proposed Bathymetry Detection Methods

The proposed methods for bathymetry mapping RF and MARS were tested using the corrected
Landsat 8, Landsat 7, and Spot 6 multispectral images and compared with NN and GLM algorithms.
GLM produced the following equations for bathymetry mapping over Nubia study areas in addition to the

three equations 4, 5, and 6.

ZNubia lake = — 4676 + 11.33LG — 317.2 LR + 13.49 B/R + 18.25 G/R — 45.02 LG LR - 0.26 LG B/R +
0.03LRG/R-0.91LG G/R+10.48 LR B/R-0.45B/R G/R (8)
The MARS was performed using the following parameters:
1) The maximum number of BFs in the forward phase before being pruned in the backward phase was set
as 40.
2) The GCV value was set as 4
3) The linear piecewise modelling was used. Alternatively, the NN has been trained using Levenberg-
Marquardt backpropagation training function with 10 hidden layers. The regression ensemble algorithms
LSB and BAG were ensembles with 50 regression trees. These parameters for each algorithm were
selected to have the least possible RMSE and maximum R? values. These algorithms and the statistical
analysis were applied in MATLAB environment and the MARS model was originally established by
Jekabson’s toolbox [59].
Figures 4-11, 4-13, 4-15, and 4-17 show the produced bathymetric maps resulted from the two
proposed models using Landsat 8, Landsat 7, and Spot 6 satellite images over the four study areas,
figures 4-12, 4-14, 4-16, and 4-18 the assessment of the two models, and tables 4-7, 4-8, 4-9, and 4-10

presents the resultant RMSE and R? values.
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Figure 4-11: Bathymetric maps produced from Landsat-8 imagery over Alexandria harbor area, Egypt
using (@) MARS (b) RF.
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Figure 4-12: The resultant continuous fitted models for Alexandria port area, Egypt. Depths are appeared
as points, and the solid line represents the continuous fitted model (a) MARS (b) RF.

Table 4-7: The resultant RMSEs and R? of all methods for bathymetry mapping over Alexandria port
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area, Egypt
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Figure 4-13: Bathymetric maps produced from Spot 6 imagery over Nubia Lake entrance zone, Sudan
using (a) MARS (b) RF.
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Figure 4-14: The resultant continuous fitted models for Nubia Lake entrance zone, Sudan. Depths are
appeared as points, and the solid line represents the continuous fitted model (a) MARS (b) RF.
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Table 4-8: The resultant RMSEs and R? of all methods for bathymetry mapping over Nubia Lake entrance
zone, Sudan

Methodology | GLM | NN | MARS | RF
RMSE (m) 1.02 | 0.96 0.98 0.84
R? 0.16 | 0.23 0.21 0.48
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Figure 4-15. Bathymetric maps produced from Landsat-8 imagery over Shiraho Island area, Japan using
(@) MARS (b) RF.
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Figure 4-16: The resultant continuous fitted models for Shiraho Island, Japan. Depths are
appeared as points, and the solid line represents the continuous fitted model (a) MARS (b)
RF.
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Table 4-9: The resultant RMSEs and R? of all methods for bathymetry mapping over Shiraho
Island, Japan

Methodology | GLM | NN | MARS | RF
RMSE (m) 1.16 | 1.08 1.10 0.81
R? 0.73 | 0.78 0.75 0.87
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Figure 4-17. Bathymetric maps produced from Landsat-7 imagery over Nubia Lake entrance
zone, Sudan using (a) GLM (b) NN (c) MARS (d) RF.
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Table 4-10: The resultant RMSEs and R? of all methods for bathymetry mapping over Nubia
Lake entrance zone, Sudan.

Methodology | GLM | NN | MARS | RF
RMSE (m) 1.19 | 1.10 1.10 1.08
R? 0.34 0.41 0.40 0.47

4.4. Results of Third Part of Proposed Bathymetry Detection Methods

The parameters of the NN training function was Levenberg-Marquardt backpropagation
with 10 hidden layers. RF model was constructed with 50 regression trees and 2/3 split
percentage. Finally, BE algorithm ensemble the outputs with 50 trees. These parameters were
selected for each algorithm based on the least possible RMSE and highest R? values. All
these algorithms were implemented in Matlab environment.

Figures 4-19 and 4-21 shows the bathymetric maps computed by applying each model
using the Landsat 8 and Quickbird satellite images for each study area, Figures 4-20 and 4-22
the evaluation of each model, and Tables 4-11 and 4-12 summarises the corresponding
RMSE and R? values.
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Figure 4-19. Bathymetric maps derived by applying each algorithm using Landsat-8 imagery
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Table 4-11. The RMSEs and R? of all methods for bathymetry detection over Alexandria port

area, Egypt.
Methodology NN RF BE
RMSE (m) 0.92 0.64 0.44
R? 0.65 0.83 0.92

39



/

TR mW100m s

1 Kilometers| s Kilometers|

124°14'30"E 124°15'0"E 124°15'30"E 124°16'0"E 124°15'0"E 124°15'30"E 124°16'0"E

(@)

24°22'30"N

24°21'30" N

24°20'30"N
. 1
P g s Kilometers)|
124°14'30"E 124°15'0"E 124°15'30"E 124°16'0"E

(©
Figure 4-21. Bathymetric maps derived by applying each algorithm using Quickbird imagery
over Shiraho Island area, Japan. (a) NN (b) RF (c) BE.

40



R’=0.832
RMSE=1.05m

0] R=0:826
RMSE=1.06m

NN Predicted Depths (m)
o

RF Predicted Depths (m)
L=}

=1
[
=]
—
<
—
ra
[=1
=
=]
—_
=1
—
[

6 2 4 6
Field Depths (m) Field Depths (m)
@ (b)

R=0.855
RMSE=0.96 m

BE Predicted Depths (m)
o oo
. .

Field Depths (m)

(©)
Figure 4-22. The continuous fitted models for Shiraho Island, Japan. Depths are represented
as points, and the continuous line represents the continuous fitted model (a) NN (b) RF (c)

BE.
Table 4-12. The RMSEs and R? of all methods for bathymetry detection for Shiraho Island,
Japan.
Methodology NN RF BE
RMSE (m) 1.06 1.05 0.96
R2 0.826 | 0.832 0.855

4.5. Summary

This chapter outlined a pixel-based LULC classification methodology using the BE with RF
in a hierarchal arrangement. This methodology was proposed and assessed using Landsat 8
satellite image over a coastal heterogeneous territory. To confirm the efficiency of the
presented approach over SVM and NN base classifiers, classification was applied using a
Landsat 8 satellite image over Egypt’s Lake EIl-Burullus and its environments. All the
necessary observed reference data were collected by manually on screen digitizing of the
Landsat 8 image. The overall accuracy of the three base classifiers RF, SVM, and NN were
92.8%, 92.6%, and 91.4% in that order. The BE resulted in 92.6% with SVM and 92.1% with
NN. BE with RF produced a 93.3% overall accuracy percentage.

In addition, three approaches for bathymetry mapping were presented. These approaches
were applied over four diverse areas using Landsat 8 and Spot 6 satellite images. These areas
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were selected to offer variation in studied surfaces, level of turbidity, and the water depths.
The green, red, blue divided by red, and green divided by red band ratio logarithms corrected
from atmospheric and sun-glint errors used as input data and water depth produced as output.
To evaluate the presented methods, they were compared with the results of Lyzenga GLM
and NN methods. All the produced results were also compared with field echosounder water
depths values. The Lyzenga GLM correlation algorithm gave RMSE values of 0.96 m, 1.02
m, and 1.16 m, though the NN produced RMSE values of 0.87 m, 0.96 m, and 1.08 m in the
three study areas, respectively. The proposed approaches, SVR, LSB, and BAG, yielded
RMSE values of 0.92 m, 0.88 m, and 0.65 m for the first study area, 0.98 m, 0.99 m, and 0.85
m for the second study area, and 1.11 m, 1.09 m, and 0.80 m for the third study area,
respectively.

Moreover, the second part of the study proposed RF and MARS approaches for bathymetry
mapping. These approaches were applied over four diverse areas using Landsat 8, Landsat 7,
and Spot 6 satellite images. These areas were selected to offer variation in water surfaces,
level of turbidity, and the water depths. The green, red, blue divided by red, and green
divided by red band logarithms corrected from atmospheric and sun-glint errors used as input
data and water depth produced as output. To evaluate the presented methods, they were
compared with the results of Lyzenga GLM and NN methods. All the produced results were
also compared with field echosounder water depths values. Lyzenga GLM correlation
algorithm gave RMSE values of 0.96 m and 1.16 m, though the NN produced RMSE values
of 0.87 m and 1.08 m in the four study areas, respectively. The proposed approaches MARS
and RF yielded RMSE values of 0.92 m and 0.65 m for the first study area, 0.98 m and 0.85
m for the second study area, and 1.11 m and 0.80 m for the fourth study area, in that order.

Finally, BE as a hybrid based approach for bathymetry detection were tested. This
approach was applied in two diverse areas with different number of available field points:
Alexandria port, Egypt and a part of Shiraho Island, Japan, with 12.5 m water depths. For NN
and RF methods the green and red band logarithms corrected from atmospheric and sun-glint
systematic errors of Landsat 8 and Quickbird satellite images were set as input data and water
depths as output. The proposed approach ensemble the outputs from NN and RF approaches.
To validate the improvement of BE proposed approach, it was compared with NN and RF
results. Achieved results were also compared with echosounder water depths field data. NN
yielded RMSE values of 0.92 m and 1.06 m, RF gave 0.64 m and 1.05 m, though the
proposed BE approach produced RMSE values of 0.44 m and 0.96 m over the two

42



investigated areas, respectively. Approximately 20 cm and 10 cm increasing in the accuracy

of detecting depths over a silt-sand area and coral reefs area, respectively.
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CHAPTER 5
DISCUSSION AND CONCLUSIONS

5.1. Discussion for LULC classification

BE was applied with the three base classifiers RF, SVM, and NN in a hierarchal
arrangement. The number of bagging trees after try and error was 10 trees, based on the
maximum overall accuracy and minimum out-of-bag error. RF trees splitting was performed
using Gini index diversity criterion. The optimum number of RF trees was calculated based
on the random combinations of the three input variables and the maximum overall accuracy.
The maximum overall accuracy was accomplished using 10 RF trees.

The commission and omission’s errors presents the enhancements of the classification
accuracy using BE with three base classifiers RF, SVM, and NN. All the classes commission
and omission errors were decreased with the exception of the building class. The efficiency
of BE in reducing the variance of unstable algorithms, especially RF and NN, is confirmed.
BE increases the overall accuracy of the two base classifiers as RF with 0.5% and NN with
0.7% improvements.

For evaluating the complexity cost of proposed approach, two factors were tested its
computational time and usage memory space. While BE improves the computational time
and usage memory space with SVM and NN base classifiers to approximately 7 times in
average, this problem can be solved. Dividing the study area into successive zones and
increasing the memory reduce this demerit. Moreover, BE with RF base classifier had less

computational time and usage space than BE with SVM and NN base classifiers.
5.2. Discussion for Bathymetry detection

To select the appropriate bands for bathymetry determination, a statistical analysis was
performed to investigate the correlation between water depths and various imageries bands.
This investigation demonstrated a strong correlation between the red and green bands with
water depths [24]-[16]. Besides the red and green bands, the blue/red and green/red band
ratios also demonstrated a strong correlation to the water depths.

The Lyzenga GLM model correlates the band combination directly to the water depth. In
this research experiments, the best combination that achieved the lowest RMSE and highest

R? values occurred between the green and red band logarithms as well as the blue/red and
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green/red band ratios. Also, NNs were used to perform a correlation between the multilayers
of the imagery bands as an input and water depth as an output through multidimensional
nonlinear functions. The research results agree well with those of previous studies such as
Ceyhun and Yal¢in [14] and Gholamalifard et al. [28], which have argued that NNs
outperform conventional models as the Lyzenga GLM model or the Stumpf ratio model. An
NN suffers from one major issue in that it requires many trials to find the best weights for
correlation as it is an unstable black-box approach having significant fluctuations in RMSE
and R2 values from one trial to another.

The SVR algorithm, on the other hand, is a stable approach that uses minimum sequential
optimisation to correlate the imagery bands with water depth. The optimum kernel function
was selected, after several trials, from the radial basis function kernel, the polynomial kernel,
and the Pearson universal kernel based on minimum RMSE and maximum R2. The latter
outperformed the other kernel functions with the highest R2 and lowest RMSE. Also, the
optimum SVR parameters, C, €, {, ®, and o, were selected based on the minimum RMSE
criterion.

LSB and BAG are fitting ensembles of regression tree algorithms that have two different
theories for collecting regression trees. LSB works sequentially by focusing on the missed
regression values of the previous tree. On the contrary, the BAG ensemble averages
regression trees built from a bootstrapped random selection from input data. For both
ensembles, the optimum number of regression trees was selected after sequential trials of
various numbers of trees (10, 20, 30... 100), and the best values were achieved with 50 trees.
Both algorithms use the Gini diversity index for the splitting trees that are not pruned. The
randomness of the regression trees and the splitting of the data into training and testing sets
argues that the ensembles were not overfitting the input data. The results illustrate a
preference of all proposed algorithms to Lyzenga GLM in addition to outperformance and
greater stability of the BAG ensemble compared to the NN approach.

The MARS algorithm, on the other hand, is a stable approach that avoids overfitting and
achieves comparable results to NN in the study areas. After several trials, the optimum
number of BFs and GCVs were selected on the basis of the minimum RMSE and maximum
R2.

The RF algorithm is a fitting ensemble of regression trees algorithm that averages
regression trees built from a bootstrapped random selection from input data. The optimum

number of regression trees was selected after sequential trials of various numbers of trees,
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following which the best values were achieved with 50 decision trees. Also, the Gini diversity
index was used for the splitting trees that were not pruned. Two RF regression tree ensembles
were created and combined. The randomness of the regression trees and the splitting of the
data into training and testing sets ensured that the ensembles did not overfit the input data.

Many researchers used low resolution satellite images for bathymetry detection especially
Landsat images exploiting their free availability [28]-[16]-[15]-[60].

To compare achieved results with comparable studies many factors should be considered.
These factors are images spatial resolutions, bottom type, water turbidity, availability of
adequate number of field points in the study area, and depths range. For instance, Sanchez-
Carnero et al. [16] confirmed the outperformance of Lyzenga GLM compared to principal
component analysis (PCA) and green band correlation algorithms using Spot 4 imagery with
10 m resolution over turbid water in a shallow coastal area. The GLM yielded RMSE of 0.88
m in a depth range of 6 m. Pacheco et al. [15] tested the Landsat 8 coastal, blue, and green
bands for bathymetry detection using Lyzenga GLM over clear waters in a shallow coastal
area and achieved an RMSE of 1.01 m in a depth range of 12 m. Also, Gholamalifard et al.
[28] supported the better performance of the NN approach compared to PCA and a red band
correlation using Landsat 5 imagery over a deep water area. The research produced RMSE of
2.14 m in a depth range of 45 m. Kibele J. and Shears N. [61] proposed K-Nearest Neighbor
(KNN) approach for detecting bathymetry over a clear coral reef area with large patches of
sand and 20 m depths range. KNN method achieved RMSE of 0.8 m using Worldiew 2
satellite image better than Lyzenga linear method. However, a large number of field points,
approximately 300000 points, were required for training the algorithm. Linda et al. [30]
developed Neuro-Fuzzy approach for detecting bathymetry over a sandy bottom coastal area
with clear water using Quickbird imagery. A RMSE of about 0.64 m has been achieved over
a depths range of 14 m with small training samples and a slight sea conditions.

Our results are comparable to those of the studies for the NN and Lyzenga GLM

approaches within the same depth ranges.

5.3. Conclusions

1) From the produced results, it can be concluded that BAG, LSB, and SVR approaches
achieved more accurate results than Lyzenga GLM for bathymetry detection over four

diverse study areas.
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2) The outperformance of BAG approach compared to NN approach was confirmed over four
diverse study areas.

3) From the produced results, it can be concluded that RF and MARS approaches achieved
more accurate results than Lyzenga GLM for bathymetry detection over four diverse
study areas.

4) The outperformance RF approach to NN approach was confirmed over four diverse study
areas.

5) BE ensemble provide more accurate results than using single NN or RF approaches for
bathymetry mapping over diverse areas.

6) From the presented classification results, BE enhances commission errors for the three
base classifiers and decrease omission errors for RF and NN base classifiers also the
precedence of BE with RF base classifier to other base classifiers, for instance SVM and

NN was confirmed.
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