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Abstract:

Collecting and analysing bathymetric information is 
essential for lake management. This is particularly true 
regarding Lake Nasser/Nubia in Egypt, where accumulated 
sediment in the lake must be examined. This is typically 
accomplished through field measurements, which are time 
consuming and costly. However, remotely sensed imagery 
provides wide coverage, low cost, and time-saving solutions 
for bathymetric measurements, especially in shallow areas 
with high erosion or sediment accumulation, such as at the 
entrance of Lake Nasser/Nubia. In this study, bagging (Bag) 
and least square boosting (LSB) fitting algorithms that use 
reflectance of green and red band logarithms, green/red band 
logarithms ratio, and blue/red band logarithms ratio are pro-
posed for bathymetry detection. For validation, the proposed 
approaches were compared with the ratio method (RM) and 
neural network (NN) conventional methods. Bathymetric 
data obtained from all methods using SPOT-6 imagery were 
evaluated by means of global positioning system (GPS) and 
echo sounder data field measurements. The Bag ensemble 
outperformed all methods with 0.85 m RMSE, whereas RM, 
LSB, and NN yielded 1.03, 0.99, and 0.97 m respectively. 
The results showed that the proposed approaches outper-
form and are more accurate than RM conventional method 
and the Bag approach is more accurate than the NN model 
when applied over shallow water depths of up to 6.5 m.
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INTRODUCTION

Bathymetric estimation of shallow water areas is consid-
ered the most important factor in coastal applications, coastal 
management, and shipping activities (Leu and Chang, 2005). 
These areas are primarily coastal and lake areas, where sed-
iment movements as a result of tidal changes, wave move-
ments, and floods have caused severe changes at the sea or 
lake bottom (Lyzenga, 1978, 1985). Therefore, detailed 
bathymetric information is now required, particularly for 
these applications.

The conventional methods for detecting bathymetry are 
single multibeam echo-sounders or airborne LiDAR. 
Multibeam echo-sounders are considered the most accurate 

method, able to measure bathymetry at up to 8 cm vertical 
accuracy in 200 m water depth. Some equipment can detect 
the sea floor in water depths of up to 500 m with adequate 
vertical resolution. By contrast, Airborne LiDAR is consid-
ered suitable for shallow areas and can achieve vertical 
accuracy of 20 cm in up to 30 m water depth (Su et al., 
2008). However, these methods are limited by their spatial 
coverage, extensive costs, and time consumption.

Remote sensing represents a feasible alternative solution 
for bathymetric detection. Wide coverage, continuous moni-
toring, and cheaper costs are some of the advantages of 
remote sensing in bathymetric applications (Sánchez-
Carnero et al., 2014).. Bathymetric estimation using satellite 
images began in 1970 and the first satellite images used were 
from Landsat (Lyzenga, 1981). Higher resolution satellites 
were then launched and used to measure water depth, for 
instance IKONOS (Stumpf et al., 2003), SPOT-4 (Sánchez-
Carnero et al., 2014), QUICKBIRD (Linda et al., 2011), and 
WORLD VIEW-2 (Doxani et al., 2012). In these previous 
studies that examined bathymetry detection, the maximum 
depth of water in which the seafloor can be detected was 
30 m under specific conditions. In addition, the average 
mean error was between 10 and 30% based on water clarity, 
bottom type, and atmospheric conditions (McIntyre et al., 
2006).

Several algorithms have been developed for determining 
bathymetry according to the relationship between image 
reflectance values and water depths. Lyzenga (1978) devel-
oped the first algorithm based on this linear relationship. 
This method removes the atmospheric and water surface 
effect from images wherein the reflected values represent 
only the water depth. Limitations of this method include the 
assumptions that the water bottom is homogenous and water 
clarity is basically the same across the imaged area (Mehdi 
et al., 2013). Lyzenga (1985) tried to overcome these limita-
tions by using a combination of several imagery bands based 
on the multiple log linear regression model. Stumpf et al. 
(2003) developed an algorithm based on the ratio between 
bands and correlated these values with known water depths. 
Unfortunately, this latter method has no physical foundation 
and requires specific parameters to be defined by the user 
(Sánchez-Carnero et al., 2014).

NNs (Neural Networks) represent a suitable alternative 
algorithm for bathymetric detection. Ozçelik and Arısoy 
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(2010) began using NNs for bathymetric detection because 
they overcome drawbacks of conventional approaches and, 
in fact, possess many advantages. For example, field data 
requirements are reduced and NNs use raw reflectance val-
ues regardless of the bottom type or water column factors. 
Finally, they are more practical and faster than conventional 
methods. NNs have also been applied in other studies using 
different satellite images. For instance, Sheela et al. (2013) 
used IRS P6-LISS III images and Linda et al. (2011) used 
QUICKBIRD images. The limitation of their usage of neural 
networks for detecting bathymetry was that they used all 
image bands as input for the NNs algorithm. In addition, sun 
glint and certain atmospheric conditions may affect estima-
tion of water depths.

The Bag (Bagging) and LSB (Least Square Boosting) 
algorithms proposed in this study use green, red, blue/red, 
and green/red bands logarithms since, after many trials, they 
were found to provide higher correlation with actual water 
depth than the other bands. First, images were corrected for 
atmospheric and sun glint errors. The proposed algorithms 
were then applied using SPOT-6 imagery over shallow and 
highly turbid water. All results were evaluated and compared 
to field measurements of water depth over the same area 
using an echo-sounder.

STUDY AREA AND DATA

The study area is the entrance zone of Lake Nasser/Nubia. 
This area extends to the Sudanese part of Lake Nubia, cov-
ering 5 km in an east-west direction and 5 km in a north-
south direction (Figure 1). Most of the study area consists of 
non-uniform, shallow, and highly turbid water with depths 
up to 6.5 m. It also has a high rate of sediment movement 
and annual flood changes. Almost the entire lake bottom is 
covered with clay.

Imagery data
A SPOT-6 satellite image with four multispectral bands 

with wavelengths of Blue (0.455 μm–0.525 μm), Green 
(0.530 μm–0.590 μm), Red (0.625 μm–0.695 μm), and 
Near-Infrared (0.760 μm–0.890 μm) was used to detect 
bathymetry in the study area. For radiometric corrections, all 
required parameters were available in an image metadata 
file. The image had 1.5 m spatial resolution and was acquired 
in moderate wave conditions on the 12th of January 2014 
which is the same date water depths were measured in the 
field (see Figure 1).

Echo-sounder data
Field observations of water depth used for evaluating and 

calibrating algorithms were acquired by an ODOM hydro-
graphic system echo-sounder instrument (Echotrac model DF 
3200 MKII with built-in Differential GPS). The echo-sounder 
vertical accuracy is 0.01 m ± 0.1% of depth in water depths 
ranging from 0.2 to 200 m. About 13,000 water depth points 
were collected and referenced to the MSL (Mediterranean 
Sea Level, see Figure 2).

METHODOLOGY

Bathymetric data was calculated from satellite images 
through three successive steps. First, we converted the digi-
tal numbers of image pixels to reflectance values. Second, 
we corrected the imagery for atmospheric errors. Finally, we 
corrected the imagery from sun glint errors. The resulting 
image can be correlated to water depths using field calibrat-
ing points. These steps are described in more detail in the 
following subsections:

Pre-processing of satellite imagery
We computed the reflectance of each pixel value using the 

parameters in the metadata file based on the following equa-
tion.

ρλ = (Mp DN + Ap)/sin θSE (1)

where, ρλ denotes reflectance of the top of atmosphere 
reflectance, DN represents the digital numbers recorded by 
the sensor, Mp is the band-specific multiplicative rescaling 
factor for reflectance, Ap denotes the band specific additive 
rescaling factor for reflectance, and θSE is the local sun eleva-
tion angle in degrees. The Mp, Ap, and θSE values were avail-
able in the image metadata file (.MTL file).

We corrected the reflectance values for atmospheric 
effects using dark pixel subtraction theory. In this method no 

Figure 1. The study area (yellow square) in the entrance zone 
of Lake Nasser/Nubia, Nile-River-Sudan as a SPOT-6 image

Figure 2. Field bathymetry reference points from echo-
sounder over the study area
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atmospheric parameters are needed and it is based on the 
hypothesis that the pixel with the darkest value has no reflec-
tion and the remaining value of this pixel came from the 
atmospheric effect. As a result, an atmospheric correction 
can be calculated by subtracting all pixels from this pixel 
using the following equation (Doxani et al., 2012):

Rac = Ri – Rdp (2)

where Rac represents the corrected pixel reflectance value, 
Ri is the initial pixel reflectance value (ρλ), and Rdp denotes 
the darkest pixel value.

We corrected the reflectance values for sun glint errors 
using the relation between the near-infrared band and other 
bands (Hedley et al., 2005) based on the following equation:

Ri' = Ri * bi (RNIR – MinNIR) (3)

where Ri' denotes the de-glinted pixel reflectance value, Ri 
represents the initial pixel reflectance value, bi is the regres-
sion line slope resulting from the correlation between a 
sample of a visible band reflectance values and NIR band 
reflectance values over the glinting area, RNIR denotes the 
corresponding pixel value in NIR band, and MinNIR rep-
resents the minimum NIR value in the same sample of the 
glinting area.

Proposed approaches for bathymetry detection
Ratio method

The ratio method depends on the difference in attenuation 
degree between bands; one band may be greater or less than 
the others in terms of the degree of attenuation. Therefore, 
this phenomenon can be used to correlate the ratio between 
bands to the difference in water depth (Stumpf et al., 2003). 
This approach overcomes the problem of sea bottom vari-
ability, especially regarding sea grass or microalgae areas 
(Su et al., 2008) because the change in sea bottom albedo 
affects both bands similarly. However, a change in water 
depth has a greater effect on the bands which are attenuated 
highly (Michael, 2009). Stumpf et al. (2003) prove the 
uniqueness of their approach to the log linear inversion 
model. The following equation describes the ratio model (Su 
et al., 2008).

Z = m1 (ln (n λ1))/ (ln (n λ2)) – mo (4)

where mo, m1, and n are constant coefficients, and λ1 and λ2 
are two bands with corrected reflectance values. The con-
stant coefficients can be determined through correlating field 
points with the pixel values of the same points and thereby 
used to detect bathymetry over the whole study area.
NN method

The supervised approach of the multi-layer perception 
(MLP) model with the back propagation (BP) method as a 
training algorithm can be used to demonstrate the non-linear 
relationship between input and output data (Rumelhart et al., 
1986). This approach consists of three parts. The input layers 
act as neurons, which, in this case, are the multispectral 
image band values. The hidden layer is used to determine the 
network training process. Finally, the output layer represents 
the water depths in this case (Mehdi et al., 2013). The BP 
algorithm tries to reach a pre-defined level of accuracy. 
Therefore, it starts with initial weights to find the values with 
the least number of errors by comparing network outputs 
with actual values in an iterative process (Behzad, 2014). 

The transference of net inputs to the hidden layer occurs by 
means of the log sigmoid function. In addition, the linear 
function is used to transfer from the hidden layer to node 
outputs (Ozçelik and Arısoy, 2010). Because it is highly rec-
ommended in training middle-sized MLP NNs, the 
Levenberg-Marquard training algorithm was used to train 
the BP for weight and bias values updating (Ananth, 2004).

LSB fitting algorithm
The basic purpose of boosting is to increase the strength 

of weak learners by combining them to produce a more pow-
erful model (Hastie et al., 2008). In boosting theory, multi-
ple models are developed in sequence and higher weights 
are assigned to learners which are difficult to fit in regression 
problems (Quinlan, 2006). Initial weak learners learn 
sequentially and simple models are fitted to data, then all 
data is analysed for error prediction. Data samples that are 
difficult to fit are then identified. The next step is to create 
models which attempt to focus on these difficult data sam-
ples by assigning them higher weights and identifying the 
correct prediction (Mochizuki and Murakami, 2012). 
Therefore, boosting is a technique to improve the perfor-
mance of a primary model by converting a series of weak 
learners into robust predictors (Ihler, 2012).

Bag ensemble fitting algorithm
Breiman (1996) suggested Bag as an ensemble learning 

algorithm to improve prediction model performance, regres-
sion, and classification accuracy. His goal was to overcome 
overfitting problems and reduce algorithm variance. The 
main objective of bagging theory is to create independent 
samples with replacements from the training set, and then 
generate a fitting model to each bootstrap sample. Finally, all 
generated models are aggregated by averaging in regression 
problems (Shivali and Vishakha, 2014). This process can be 
particularly useful for improving the results of unstable 
algorithms as regression trees and NNs. The results are 
always more favorable than when using a single model 
(Inoue and Kilian, 2005). The Gini diversity index can be 
used to split each node in order to assign a criterion for 
impurity or error. Splitting is finished when the Gini index 
reaches zero and the results are pure split nodes (Ozlem and 
Oguz, 2012).

RESULTS AND DISCUSSION

Figure 3 summarises the processing steps for estimating 
bathymetric information from SPOT-6 satellite imagery. The 
first two steps involve converting the DNs to reflectance val-
ues and correcting both atmospheric and sun glint errors. 
These steps are performed in an ENVI environment. The 
proposed approaches for estimating bathymetry are then 
conducted in a MATLAB environment. All the statistical 
analysis was also performed in a MATLAB environment.

The ratio method was applied using the ratio between cor-
rected green and red band logarithms of the field points and 
were correlated to the water depth values at the same points 
yielding the following equation:

Z = –86.21 * (1000 (ln green))/(1000 (ln red)) + 260.6 (5)

This equation can be used to calculate bathymetry over 
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the whole study area. The algorithm yielded R2 = 0.144, Bias 
= 0.011, and RMSE = 1.03 m. The ratio model is presented 
in Figure 4.

The MLP BP supervised neural network with the Levenberg-
Marquard training algorithm was applied. Corrected green, 
red, blue/red, and green/red band logarithms were used as 
the input layer and water depths as the output layer. The data 
set was divided into random samples with 75% for training 
and 25% for testing. The log sigmoid function was used with 
the hidden layer, 10 neurons were selected after many trials 
to get the optimum number of neurons, and the linear func-
tion with the output layer. The NN results were R2 = 0.215, 
Bias = 0.002, and RMSE = 0.97 m. Results for the NN fitted 
model are shown in Figure 5.

An LSB ensemble was applied using the corrected green, 
red, blue/red, and green/red band logarithms as input values 
and water depths as output values. The data set was divided 
into separate random samples with 75% training and 25% 
testing sets. The most suitable number of regression trees 
was selected after several trials based on the least RMSE and 
most accurate R2 value. The best number of trees was 50 and 
resulted in R2 = 0.204, Bias = –0.009, and RMSE = 0.99 m, 
as shown in Figure 6.

A Bag ensemble was applied using the corrected green, 
red, blue/red, and green/red band logarithms as input values 
and water depths as output values. The data set was divided 

into separate random samples with 75% training and 25% 
testing sets. The most suitable number of regression trees 
was selected after several trials based on the least RMSE and 
most accurate R2 value. The optimum number of trees was 
50 and yielded R2 = 0.412, Bias = –0.004 and RMSE = 0.85 m, 
as shown in Figure 7.

Figure 8 represents the results of all bathymetric 
approaches maps and true depths map.

Table I illustrates the RMSEs, R2, and bias of all proposed 
methods for bathymetry detection.

Selecting suitable bands for bathymetry was performed 
using a statistical analysis process to study the correlation 
between water depth and the four SPOT-6 imagery bands. 
The red and green band logarithms proved a strong correla-
tion with water depth. This strong correlation has been 
argued for previously by many researchers (e.g. Doxani et 
al., 2012; Sánchez-Carnero et al., 2014).

In addition, the RM model uses the ratio between two 
bands, the ratio between green and red bands or the ratio 
between blue and red bands. Some studies (Stumpf et al., 
2003; Su et al., 2008) argued for the validity of using these 
bands by the RM for detecting bathymetry. In our study the 
RM with green and red bands logarithms gave more accurate 
results than blue and green bands logarithms with RMSE of 
1.03 m.

Figure 3. Workflow processing steps for detecting bathyme-
try from SPOT-6 satellite imagery

Figure 4. Ratio method continuous fitted model

Figure 5. NN continuous fitted model

Figure 6. LSB ensemble continuous fitted model

Figure 7. Bagging ensemble continuous fitted model
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On the other hand, NN algorithms execute the correlation 
between the multilayer of the imagery bands as input and 
water depth as output. Many researchers (Mehdi et al., 2013; 
Ozçelik and Arısoy, 2010) have proposed a precedence of 
NN to RM and Lyzenga methods as the former exhibits the 
highest correlation between the imagery data bands and in 
situ water depth values. In these previous studies the visible 
bands were used as input layers without corrections or using 
any ratios. However, in this study, and after many trials, an 
integration between green, red bands and band ratios of blue 
/red and green/red as input layers was proposed. This inte-
gration gives the most accurate results using NN with a 
RMSE of 0.97 m. The main drawback of NN is that many 
trials are needed to find the best weights for correlation as it 
is an unstable model with high fluctuations of RMSE and R2 
from one trial to another.

The LSB and Bag are fitting ensembles of regression tree 

algorithms that have two different hypotheses for assem-
bling regression trees. The LSB performs in a sequence by 
focusing on the missed regression values of the former trees. 
Conversely, the Bag fitting ensemble averages regression 
trees made from a bootstrapped random selection from input 
data. In these two approaches, the optimal number of regres-
sion trees was selected after successive trials with several 
numbers of trees (10, 20, 30... 100), and the best values were 
reached with 50 trees. The randomness of the regression 
trees and the splitting of data into training and testing sets 
guarantee that the ensembles will not be overfitting the input 
data. As in NN, the same input bands were selected after 
many trials based on the lowest RMSE and highest R2 giving 
0.99 m and 0.85 m for LSB and Bag, respectively.

To compare our study with previous counterparts, several 
items must be considered, i.e., the depth range of the study 
area, water quality, bottom surface type, image geometric, 
radiometric resolution, and the availability of field points in 
the study area. For instance, Linda et al. (2011) applied a 
neuro-fuzzy algorithm to a QUICKBIRD image with 0.6 m 
spatial resolution over a sandy on-shore clear water area. 
The algorithm yielded standard deviation of 0.36 m at a 
depth range of 18 m. Sánchez-Carnero et al. (2014) used a 
traditional linear approach to estimate depths over a sandy 
turbid area with a 6-m range. The RMSE was approximately 
0.88 m. In this study the clay bottom surface of the lake 
entrance zone and the high turbidity are considered the main 
factors which affected the detected depths and resulted in 
high RMSE values for all approaches.

Adding the ratios between bands to corrected bands as 
input for all algorithms which have more than two bands as 
input improves the results considerably. The three approaches 
of NN, LSB, and Bag are more accurate than the conven-
tional Ratio method. In addition, the Bag algorithm outper-
forms all methods and is more stable.

Further research could consider applying the same con-
cepts described here to clearer water areas to achieve more 
accurate RMSE results. Although these RMSE results are 
relatively high, they could be used for lake management and 
navigation purposes especially in the entrance zone. This 
area presents many difficulties for mapping field bathymetry 
because of its shallowness, its continuous sediment move-
ments and the synoptic coverage of satellite imageries.

CONCLUSIONS

In this study, new methods for detecting bathymetry are 
proposed and compared with conventional approaches. 
These algorithms are known as Bag and LSB, and use cor-
rected red, green, green/red, and blue/red bands from atmo-
spheric and sun glint errors as input values. The algorithms 
were validated using SPOT-6 imagery over the entrance 
zone of Lake Nubia. The study area was extremely turbid 
and had a clay bottom surface and a depth range of 6.5 m. 
The new approaches were compared with two conventional 
approaches: the NN and RM. The Bag algorithm yielded 
RMSE of 0.85 m whereas the LSB, NN, and RM results 
were 0.99, 0.97, and 1.03 m, respectively. These results 
proved that the proposed approaches outperformed the con-
ventional RM method. In addition, results improved when 
using the ratios between bands with the corrected bands as 

Table I. The RMSEs, R2, and bias of all proposed methods 
for bathymetry detection

Methodology RM NN LSB Bag

RMSE (m) 1.03 0.97 0.99 0.85

R2 0.144 0.215 0.204 0.412

Bias 0.011 0.002 –0.009 –0.004

Figure 8. Results of all bathymetric approaches related to 
MSL (a) true depths (b) RM (c) NN (d) LSB (e) Bag



H. MOHAMED ET AL.

—50—

input for all approaches. Finally, the Bag algorithm proved 
to perform uniquely well in comparison to all tested meth-
ods, including the NN approach.
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