
  

 

Abstract—Determination of bathymetric information is key 

element for near off shore activities and hydrological studies 

such as coastal engineering applications, sedimentary processes 

and hydrographic surveying. Remotely sensed imagery has 

provided a wide coverage, low cost and time-effective solution 

for bathymetric measurements. In this paper a methodology is 

introduced using Ensemble Learning (EL) fitting algorithm of 

Least Squares Boosting (LSB) for bathymetric maps calculation 

in shallow lakes from high resolution satellite images and water 

depth measurement samples using Eco-sounder. This 

methodology considered the cleverest sequential ensemble that 

assigns higher weights as Boosting for those training sets that 

are difficult to fit. The LSB ensemble using reflectance of Green 

and Red bands and their logarithms from Spot-4 satellite image 

was compared with two conventional methods; the Principal 

Component Analysis (PCA) and Generalized Linear Model 

(GLM). The retrieved bathymetric information from the three 

methods was evaluated using Echo Sounder data. The LSB 

fitting ensemble resulted in RMSE of 0.15m where the PCA and 

GLM yielded RMSE of 0.19m and 0.18m respectively over 

shallow water depths less than 2m. The application of the 

proposed approach demonstrated better performance and 

accuracy compared with the conventional methods. 

 

Index Terms—Bathymetry, PCA, GLM, least square 

boosting. 

 

I. INTRODUCTION 

Accurate bathymetric information is so important for 

costal science applications, shipping navigations and 

environmental studies of marine areas [1]. Mapping 

underwater features as rocks, sandy areas, sediments 

accumulation and coral reefs needs up to date water depths 

information [2], [3]. Water depths data are essential also for 

accomplishing sustainable management [4], bathymetric 

information constitutes a key element hydrological modeling, 

flooding estimation and degrading or sediments removing [5], 

[6]. 
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Sonar remains the primary method for obtaining discreet 

water depth measurements with high accuracy [7]. Single 

beam sonar on survey vessel can acquire single point depths 

along sparsely surveying scan lines up to 500 m depths. 

Multi-beam side scan sonar improves the scanning with wide 

swath coverage below the vessel scan line resulting better 

resolution of the resulting sounding [8]. Although these 

methods gives high accuracy with about 8 cm in 200 m water 

depths and high spatial resolution of 6 m, they have many 

limitations. These methods are time consuming, expensive, 

have low coverage areas and not appropriate for some places 

as shallow areas with depths less than 3 m [9].  

Airborne LIDAR measurements represent another method 

for accurate water depths detection especially in the last years. 

LIDAR systems are fast, accurate and appropriate alternative 

solution for difficult shallow aquatic areas [10]. Some of 

these LIDAR systems can reach 70 m depths and 20 cm 

vertical accuracy [11]. Despite of the accuracy of these 

systems they are limited in coverage compared to satellite 

images and high costing of operation [12]. 

Remote Sensing Multi-spectral satellite images are 

considered the feasible alternative method for bathymetric 

estimation [9]. These images precede the LIDAR methods in 

their wide coverage, low costs, high spatial resolution and 

suitability for shallow areas. Starting in 1978 with areal 

images over clear shallow waters Lyzenga developed the first 

empirical methods for estimating bathymetry [13]. In the 

following years many satellites were lunched with 

progressive improvements in their spatial and spectral 

resolutions. Landsat was the first satellite used for 

bathymetric applications [14], [15] followed by IKONOS 

[16], and Quick Bird [17], [18]. Recently a new version of 

high resolution satellite images were used for detecting water 

depths as instance Spot images [12] and Worldview-2 [19].  

Various algorithms were proposed for water depths 

estimation from optical satellite images depending on the 

relationship between image pixel values and water depths 

samples [2]. Lyzenga proposed a methodology depending on 

the physical Lambert–Beer law of attenuation. A log-linear 

relationship between corrected image reflectance values and 

water depths can be used for detecting bathymetric 

information in certain area. The theory depends on removing 

the sun-glint and water column effect from images.The 

resulted differences in reflectance values will be due to 

changes in water depths [8]-[10].  

However this assumption may not be correct for 

heterogeneous complex areas with different conditions in 

atmosphere and sun-glint [20]. This method was applied with 

other satellite images with some improvements in the 

following years as Landsat [21], Quickbird [22] and [9]. 
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Some researchers try to improve this methodology through 

dividing the area into zones of penetration then calculating 

the depths in these zones using Hierarchical Markov chain 

algorithms [23] or splitting the water column into attenuation 

levels according to turbidity using stratified genetic 

algorithm [24]. 

Stumpf [16] proposed another approach using band ratios. 

Their theory assumes that the effects of different 

heterogeneous water areas will be the same for two bands and 

so the ratio between their reflectance values can be used to 

estimate water depths. Although this theory needs less 

parameters and less affected with bottom type it does not 

have sound physical foundation and needs pre coefficients 

selected with trial and error by the user. Su [2] try to calibrate 

the parameters for the non-linear inversion model proposed 

by Stumpf [16] automatically using the 

Levenberg-Marquardt optimization algorithm.  

Martin [25] and Noela [12] used the principal component 

analysis (PCA) for detecting water depths from satellite 

images. The principal component of the log transformed 

reflectance was linearly correlated with water depths 

samples.  

The methodology proposed in this research uses Least 

Squares Boosting fitting ensemble for estimating water 

depths in shallow waters. The influencing bands for 

bathymetry after removing atmosphere and sun glint 

corrections and their logarithms are used as input data in the 

ensemble. The proposed approach reduces the water depth 

measurement requirements, saves time, costs and difficulties 

of field surveying. The methodology was applied using 

SPOT-4 imagery of EL-Burullus Lake in Egypt and 

compared with two other conventional methods. Achieved 

results were evaluated using Echo-Sounder bathymetric data 

for the same area. 

 

II. METHODOLOGY 

A. Study Area and Available Data 

 

 
Fig. 1. The study area (El-Burullus Lake, Nile-Delta, Egypt). 

 

A pan-sharped SPOT-4 HRG-2 satellite image with four 

multispectral bands is used for detecting bathymetry for the 

study area. The four bands are green (0.5–0.59 µm), red 

(0.61–0.68 µm), near-infrared (0.78–0.89 µm) and 

short-wave infrared (1.58–1.75 µm). The image has 10 m 

spatial resolution and was acquired on July 1
st
, 2012 in Fig. 2.  

 

 
Fig. 2. The SPOT: 4 satellite image of the study area (July 1st, 2012). 

 

In-situ depth measurements of bathymetry were acquired 

by Echo-Sounder instrument in Fig. 3. 
 

 
Fig. 3. In-situ depth bathymetry points from Echo-Sounder. 

 

B. Methodology 

The following subsections describe the methodology used 

in this research. 

1) Imagery data pre-processing 

For detecting bathymetric information from satellite 

images the radiometric corrected pixel values are firstly 

converted to spectral reflectance values [28] for all image 

bands. The required data for this conversion regarding the 

sensor characteristics in exposure time and the effective band 

widths for each band are available in the image metadata file. 

Second, two essential successive steps corrections are 

applied to the reflectance image; atmospheric correction and 

Sun-glint correction [9]. The sequence of applying these two 

corrections is arbitrary. Some researchers start with 

atmospheric correction followed by sun-glint correction 

while others reverse this procedure [29]. The following steps 

summarize the imagery data pre-processing: 

Computing theradiance values from image pixel digital 

numbers using the gain and bias information of sensor bands 

as follows [29]: 

L = DN (Gain) + Bias                                   (1) 

where:  
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The study area considered in this research consists of 

El-Burullus Lake. It is one of the largest Egyptian northern 

lakes connected to the Mediterranean Sea with a total area of 

410 km
2

[26]. It’s a shallow lake with a maximum depth of 2 

m. The shallowest part of the lake is the eastern sector with 

depths from 0.75m to 1 m [27]. Fig. 1 illustrates the study 

area.



  

L = Radiance values for each band 

DN = digital numbers recorded by the sensor 

Gain = the gradient of the calibration 

Bias = the spectral radiance of the sensor for a DN of zero. 

Both gain and bias values were available in the image 

metadata file.  

Calculating the spectral top of atmosphere reflectance of 

each pixel value using the radiances computed in Eq.2 [30]:  

 

 

where:  

𝝆AS = the top of atmosphere reflectance 

d
2
 = the square value of Earth-sun distance correction in 

atmospheric units 

Esun = exoatmospheric spectral solar constant for each band  

θz = solar zenith angle 

 

Applying the atmospheric correction to the spectral 

reflectance image. According to many researchers the 

preferred method for bathymetry detection is dark pixel 

subtraction method [17]. The corrected pixel value can be 

calculated as follows [9]:  

 

Rac = Ri – Rdp                                         (3) 

 

where: 

Rac = corrected pixel reflectance value 

Ri = initial pixel reflectance value  

Rdp = the dark pixel value.  

The dark pixel value is so important for depths 

determination process and influence the accuracy of depth 

estimation values [16].  

Applying the Sun Glint correction to the image resulted 

from atmospheric correction process. The sun glint 

correction can be performed by exploiting the advantage of 

Near-infrared band which does not contain any bottom 

reflected signals [2]. Thus the other image bands which 

contain sun glint areas could be related with the Near-infrared 

band in linear regression relationship [12]-[32]. The 

de-glinted pixel value can be easily determined as follows:  

 

Ri' = Ri × bi (RNIR - MinNIR)                            (4) 

 

where:  

Ri' = de-glinted pixel reflectance value 

Ri = initial pixel reflectance value 

bi = regression line slope 

RNIR = corresponding pixel value in NIR band  

MinNIR = min NIR value existing in the sample.  

Choosing of pixel samples has varying dark, deep and has 

glint values from the imagery water region influencing the 

accuracy of results [33]. 

2) Methods 

a) PCA correlation approach 

PCA or Multi-band Approach can be used for bathymetry 

detection through correlating in-situ depth measured values 

and reflectance of bands with their logarithms. Therefore, it 

can use multi-band images for getting more accurate water 

depths [1]. Image bands are transformed through this 

approach to new uncorrelated bands known as components 

ordered by the amount of image variation they can elucidate 

[34]. The first component resulted from PCA can be 

correlated to water depths regarding the other environmental 

factors which have less influence on variation [35]. 

b) GLM correlation approach 

The Generalized Linear Model represents least-squares fit 

of the link of the response to the data. GLM links a linear 

combination of non-random explanatory variables X as 

example image bands to dependent random variable Y as 

instance the water depths values [36]. The mean of the 

nonlinear observed variable can be fitted to a linear predictor 

of the explanatory variables a link function using a link 

function of g [µY] as follow [12]: 

 

g [µY] = βo+  𝛽𝑖 𝑋𝑖𝑖 +  𝛽𝑖𝑗 𝑋𝑖𝑖𝑗 𝑋𝑗               (5) 

 

where: βo, βi and βij are coefficients and Xi, Xj are variables 

combinations.  

c) Least squares boosting fitting ensemble for 

bathymetry estimation 

Ensemble is a collection of predictors combined with 

weighted average of vote in order to provide overall 

prediction that take its guidance from the collection itself [37]. 

Boosting is considered as one of the most powerful learning 

ensemble algorithms proposed in the last three decades. It 

was originally designed for classification but it was found 

that it can be extended to regression problems [38]. Its an 

ensemble technique in which learners are learn sequentially 

with early learners fitting simple models of data and then the 

data are analyzed from errors. Those errors identifies 

problems of particular instances of data that are difficult or 

hard to fit. Later models focus primarily on those instances to 

try predicting them right. In the end all models are given 

weights and the set is combined into some overall predictors. 

Thus boosting is a method of converting a sequence of week 

learners into very complex predictors or a way of increasing 

complexity of primary model. Initial learners often are very 

simple and then the weighted combination can develop more 

complex learners in Fig. 4. The basic concept of boosting is 

developing multiple models in sequence by assigning higher 

weights as boosting for those training cases or learners that 

are difficult to be fitted in regression problems or classified in 

classification problems [39].  

The predictive learning problem usually consisting of a 

random output variable (Y) that may be called a response and 

a set of random input variables (X = X1 … Xn) may be called 

explanatory. A training sample (Yi, Xi)
N
 of known (Y, X) 

values is used for obtaining an estimation or approximation 

F(X), of the function F*(X) for correlating or mapping x to y, 

in order to minimize the expected value of some specified 

loss function L(Y, F(X)) over the joint distribution of all (Y, X) 

values [40]: 

F* = arg min EY, xL (Y, F(X)) = arg min EX [EY (L(Y, F(X))) | X]          

(5) 

For Y є R (Regression problems) loss functions L(Y, F) 
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𝝆AS =
𝜋 𝑑2 𝐿

Esun 𝑐𝑜𝑠𝑧
                                     (2)

The earth-sun distance correction for the acquired imagery 

date is d=1.01667 [31]. Esun for each band of SPOT-4 image 

and θz can be found in the image metadata file. 



  

 

 

  

 

 

Least-Squares algorithm can be used to minimize any 

differentiable loss L(y, F) in conjunction with forward 

stage-wise additive modeling for fitting the generic function 

h (X, a) to the pseudo-responses (F = -gm(Xi)) for i=1 … N. In 

Least-squares regression the loss function is L(Y, F) = 

(Y-F)
2
/2 and the pseudo-response is Ῡi = Yi - Fm-1 (Xi). The 

following steps illustrate Least-Squares Boosting algorithm 

[42]:  

Fo(X) = Ῡ  

For m = 1 to M do: 

Ῡi = Yi - Fm-1 (Xi), i = 1, N  

(ρm, am)= arg mina, p [Ῡi −  ρℎ(Xi;  𝐚)]2𝑁
𝑖=1  

Fm(X) = Fm-1 (X) + ρmh (X; am) 

end For  

end Algorithm 

As a result, gradient boosting on squared-error loss 

produces the normal stage-wise approach of iteratively fitting 

the current residuals [43]. 

 

 
Fig. 4. Boosting example a sequence of learned models and their error residuals where (a) represents single decision model, (b) represents its error residuals 

and (i) represents sum of five decision models [37]. 

 

III. RESULTS AND DISCUSSION 

The SPOT-4 multispectral image of the study area was 

pre-processed for water depths estimation employing two 

successive steps. 

First, image pixel values were converted to radiances then 

to reflectance utilizing image metadata file values. Second, 

the atmospheric correction and sun-glint removal were 

applied to image reflectance values. These two steps were 

performed in Envi software environment. 

The three approaches PCA, GLM and Least Squares 

Boosting ensemble were applied to the pre-processed Spot-4 

multispectral image. A prototype software is developed in 

Matlab environment to implement the used approaches. The 

details can be listed as follows: 

 

 

with R
2
 = 0.479 Principle Component fitted continuous 

model showed in Fig. 5. 
 

 
Fig. 5. 3rd order polynomial continuous fitted model using PC1. 

 

2) The Generalized Linear Model represents a 

least-squaresfit of the link of the response to the data. As 

a result a linear combination of green and red corrected 

bands (GB, RB) and their logarithms (LG, LR) were 

linked to the water depths values by GLM in the form: 
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regularly include squared-error (Y - F)
2

and absolute error | Y

- F |. F (x) can be restricted to be a member of a parameterized 

class of functions F (X; P). As example of this process the 

additive expansions [40]:

F (X; (βm, am)
M

) =  𝛽𝑚𝑀
𝑚=1 h (X, am)            (6)

where: 

h(X, a) is generic function a simple parameterized function 

of the input variables X.

am the parameters which characterized the generic function.

βm the set of parameters whose joint values identify 

regression functions. In Boosting case each function of h (X,

a) is a regression tree with parameters am as splitting variables.

This expansion is included in many approximation methods 

as Neural Network, Support Vector Machine and 

Wavelets…etc. [41].

1) The Principle Component Algorithm was applied to the 

green and red corrected bands and their logarithms. 

Afterwards, the first principle component (PC1) was 

correlated with 3
rd

order polynomial to the water depths 

values in the form: 

Z= -0.648 + 0.08 PC1 – 0.01 PC1
2
+ 0.003 PC1

3
     (7)



  

Z = 1050.8 + 17562 GB – 12903 RB + 5.7432 LG – 14.6 Lr 

–7211.8 GB RB – 5863.1 GB LG +9543.7 RB Lr+ 8188.8 GB 

Lr –7139.7 RB LG –72.058 LG Lr                 (8) 

with R
2
 = 0.527 GLM fitted continuous model showed in Fig. 

6. 

 

 
Fig. 6. GLM continuous fitted model. Depths are represented as points and 

continuous line represents the fitted continuous model.  
 

3) Least Squares Boosting ensemble uses the green and red 

bands and their logarithms as input values and Water 

depths as output values. The data set was divided to 

independent training and testing sets for evaluating the 

performance quality of ensemble with 75% of data set 

for learning and 25% for testing. After many trials, the 

appropriate number of regression trees was determined 

based on the least RMSE and best R
2
 value and was 

found to be 50 trees. 

The best performance was achieved using 50 trees and 

resulted in R
2
 = 0.618 in Fig. 7. 

 

 
Fig. 7. Least squares boosting continuous fitted model. 

 

Finally the RMSE of all methods was computed using the 

differences among each model values and actual depths. The 

results listed in Table I. 
 

  

 

 
 

 

 

 

    

 

compared to conventional methods. Also reducing the in-situ 

depths required for water depths estimation. 

 

IV. CONCLUSION 

In this research, a methodology was developed using bands 

corrected from atmospheric and sun-glint systematic errors 

which influencing bathymetry and their logarithms as an 

input values in Least Squares Boosting ensemble. To validate 

the precedency of the proposed methodology to other 

conventional approaches a comparison was applied with two 

approaches using SPOT-4 satellite image for EL-Burullus 

(shallow Lake) with depths less than 2 m. All approaches 

were tested by data collected using Echo-Sounder for 

measuring water depths. The first approach; PCA 3rd order 

polynomial correlation algorithm using the first principle 

component gave RMSE of 0.19 m. The GLM with 

reflectance of Green, Red bands and their logarithms yielded 

RMSE of 0.18 m. The proposed methodology using Least 

Squares Boosting ensemble with reflectance of Green, Red 

bands and their logarithms as input values with less observed 

field measurements resulted in RMSE of 0.15 m which 

outperformed other conventional methods. It can be 

concluded that Least Squares Boosting ensemble gives more 

accurate results than conventional methods for bathymetric 

determination applications. 
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